
COMPUTATIONAL UNDERSTANDING

ANALYSIS OF SENTENCES AND CONTEXT

STANFORD UNIVERSITY

PREPARED FOR

ADVANCED RESEARCH PROJECTS AGENCY

NATIONAL INSTITUTE OF MENTAL HEALTH

MAY 197^

AD/A-005 OW

DISTRIBUTED BY:

National Technical Information Senrico
U. S. DEPARTMEKT 9F COMMERCE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wh»n Data En(«red.l

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

SIAN-CS-74-437
2. COVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE fand Subm.»

COMPUTATIONAL UNDERSTANDING: ANALYSIS OE
SiMTENCES AND CONTEXT.

5. TVPE OF REPORT a PERIOD COVERED

technical, May, 1974
6. PERFORMING ORG. REPORT NUMBER

STAN-CS-74-437
1- AUTHORfaJ

Christopher Kevin Riesbeck

8. CONTRACT OR GRANT NUMBERfaJ

DAHC l>-73-C-0435
MH 066J'5-13

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Stanford University
Computer Science Department
Stanford, California 9430b

10- PROGRAM ELEMENT. PROJECT. TASK
AREA « WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRfcSS
ARPA/IPT, Attn: S. D. Crocker
1400 V.'ilson Blvd., Arlington, Va. 22c0L)

12. REPORT DATE

May, I974
13. NUMBER 3F PAGES

I* MONITORING AGENCY NAME 4 ADDR ;SSf(/ dillermt from Conlnlling Otllc»)

Olffl Representative: Philip Surra
Durand Aeronautics Bldg., Bin. I65
Stanford University
Stanford. California l430i/

l; SECURITY CLASS, (ol thim report)

Unclassified
15a. DEC LASS! FIG ATI ON DOWNGRADING

SCHEDULE

16 DISTRIBUTION STATEMENT (ollhla lieporl)

Rexeasable without limitations on dissemination.

17. DliTRlBUTION STA" iENT (ol (ha abitracl entered In Block 20, II dllletent from Report)

18 SUPPLEMENTARY NOTES

PRICES SUBJECT TO CHANGE

'9. KEY WORDS (Contlrne on revet»* tide it necettmty anrf Identity by block number)

20. ABSTRACT (Continue on revet»» tide II neceitmry end Mentlly by block number)

The goal of this thesis was to develop a system for the computer analysis
of written natural language texts that could also serve as a theory of human
comprehension of natural language. Therefore the construction of this
system was guided by four basic assumptions about natural language compre,-
hension. Eirst, the primary goal of comprehension is always to find
meanings as soon as possible. Other tasks, such as discovering the syntactic
relationships, are performed only when essential to decisions about meaning.
Second, an attempt is made bo understand each word as soon as it is read, (con inued)

DD,™RM731473 NATIONAL TECHNICAL E

INFORMATION SERVICE
U 5 Pe^erf-nenf of Commer«

Sprlngflsld VA 12J51

I U.NCLASOIFIEL

SECURITY CLASSIFICATION ^F THIS PAGE flWian 0a(a Bnteted)

u

u

.

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY

COMPUTER SCIENCE DEPARTHLNT
REPORT NO. STAN-CS-74-437

MAY 1974

COMPUTATIONAL UNDERSTANDING! ANALYSIS OF SENTENCES AND CONTEXT

Christopher Kevin RiesüecK

Abstract:

The goal of this thesis uas to devpiop a system for the computer analysis of
written natural lamjuaqc tcxto that could also serve as a theory of hum.?.-«
comprchcnaion of natur.il larifju.ige. Therefore the construction of this syatum
was guided hy four hasir asr.uwpt ions about natural language comprehensior»
First, the primary goal of comprehension is always to find meanings as sooi'
as possible. Other taaks, such as discovering syntactic relationships, are
performed only when cocnntial to decisions about meaning. Second, an attempt
is made to understand each word <?s soon as it is read, to decide Mhat it
means and how it relates to the rest of the text. Third, comprehens ion means
not only understanditio what has been seen but also predicting what is likely
to be seen next. Fourth, the words of a te.rt provide the cues for finding the
information necessary for comprehending that text.

A dissertation submitted to the Department of Computer Seien« and the
Committee on Graduate Studies of Stanford University in partial fulfillment
of the requirements for the degree of Doctor of Philosophy. Tu.Tinment

I, ^nft
wf5lh

suPPor,e.d m P8^ by the danced Research Projects Agency
of the Office of the Secretary of Defonae under Contract 0AHCIS-73-C-e43S and
by the Nations, Institute of Mental Health Contract MHeGG45-13

The
and

views and conclusion, contained in this document are those of the authors
should not bo interpreted as neccssari'

policies, either exprnsr.cd or implied, of
Agency or the U.S. Government.

iy
the

repreat-nt ing tho official
Advanced Resoarch Projects

I

Reproduced in the USA. Available from
Service, Springfield, Virgir;a 22151.

II

the Nilional Technical Information

I

i

;
ACKNOWLEDGMENTS

J

:

While taking full responsibility for the failings

of this thesis, I would like to thank those who valiantly

fried to save me from my erring ways.

Most of all I would like to than^ Pro'essor Roger C.

Schänk under and with whon I 'lave worked for four years.

Both his approach to computational linguistics in general

and his own work in particular form the basis for the work

described here. And any patches of clarity in the prose

that follows is the result of his persistence.

Gratitude is also owed to the other two readers of

this thesis, Professors Jerome Feldman and Cordell Green.

Their comments on the first part of this thesis led to the

work described ir. the second part. Professors Kenneth

Colby and Eve Clark also provided many comments and criti-

cisms of the first part of this thesis.

I'm grateful to Neil Goldman, Paul Martin, Charles J.

Rieger III, and Dr. Manfred Wettler for many discussions

about memory processes and language comprehension. I am

f.lso grateful to Dr. Wettler and the Istituto per gli studi

semantic! e cognitivi for the opportunity they gave Bie to

work on computational understanding. And I'd like 'o thank

Kathleen Zeisler who transformed an ungodly mass of scrib-

blings into legible copy.

Unfortunately I must report that my work in the last

stages was severely hampered by the distracting presence

oi one Suzanne Barrett. It is fortunate for her that I

am not one to hold grudges

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS 111

'ABLE OF CONTENTS iv

CHAPTER 1 INTRODUCTION

1.1 What It's About
1.2 Computational Understanding
1.3 Aspects of this System
1.4 What This System Does

PART I

1
3
0

10

CHAPTER 2

GU:DE TO PART I

SENTENTIAL ANALYSIS

2.1 Introduction to Sentential Analysis
2.2 History of the Analyzer
2.3 The Proyraro Itself

2.4 Overview of the Analysis Process
2.5 Sense Versus Yeaning

CHAPTER 3

CHAPTER 4

PREVIOUS WORK

BASIC IDEAS IN THE ANALYZER

4.1 Goals and Assumptions
4.2 Pattern Matching
4 . 3 Amb igui ty

CHAPTER 5 CONCEPTUAL DEPENDENCY

5.1 Cencral Aspects
5.2 CD Elements
5.3 CD Structures

17

19
22
27

29
33

35

47
52
54

5b
59
63

i v

CHAPTER 6
S MECHANISMS

6
6,
f ,

L .

6.
6. 6

SENTENTIAL ANALV^I

Overview of Expectations and Actions
Analyzing with Expectations
Features and Expectations
Functions in the Analyzer
Conceptual Semantics
The Monitor

EXAMPLES

MULTI-SENTENCE ANALYSI.'

CHAPTER 7

CHAPTER 8

8.1 Introduction

8.2 Modifications to the Analyzer
8.3 Examples of Text Analysif

CHAPTER 9 REVIEW OF THE ANALYZE!

PART II

7 M

8 2
8 3
84
9 2

94

98

130
132
135

146

HARTER 10

'HARTER 11

GUIDE TO PART II

INTRODUCTION TO EXTENTED ANALYSIS

CONTEXT

11

12
12
12
12.
12,
12.
12.
12.

1 The Word "Context"
2 Contextual Effects
3 The Context Cluster

APTER 12 EXTENDED ANALYSIS MECHANISMS

. 1

.2
3
4
5
6
7
8

Overview of Extended Analysis

A Flow Table for Extended Analysis
Needs and Expectations

Internal Versus External Needs
Traps Versus Needs
The Focus of a Test

Forms for Needs and Requests
Example Definition Using Needs

CHAPTER 11
THE EFFECT OF KNOWLEDGE ON ANALYSIS

13.1

13.2
13.3
13.4
13.5
13.6
13. 7

Texts and Needs
Texts and Stories

Patterns and Predictions

Conceptual Requests to Language Requests
Preference: Sense Choice

Preference: Example Analysis
Preference: Following a Chain

151

15 1

156
158
161

16 6
171
17(
179
182
184
186
189

193
195
202
203
'07
212
216

CHAPTER 14 REVIEW

14.1 Observations
14.2 Future Work
14.3 Summary
14.4 Conclusions

221
22 7
236
239

REFERENCES 241

v i

\

i

CHAPTER 1

INTRODUCTION

1 . 1 WHAT IT'S ABOUT

This thesis presents a system for understanding natural

language. By understanding, I mean the assignment of mean-

ing structures to pieces of natural language texts. The

particular meaning structures that we use will be explained

later, but for the moment assume that meaning structures

are symbolic representations of the concepts underlying

iar.quäge. Computational understanding, as defined here,

is the extraction of conceptual structures from input texts.

The thesis consists of two parts. Part 1 is about a

program for the meaning analysis of sentences. The program

assigns meaning structures tc a wide range of sentences.

Typical of the class of sentences handled are the following:

John gave Mary a beating.

Sill prevented Rita from loaning the book by taking

the book.

Rita advised Mary to drink the wine.

Did Bill know that John was hunting?

The surface syntactic structures of these sentences are

fairly simple, but it is the complication in their meaning

structures that makes these sentences interesting.

Part 11 is not about a program but about a broader

theory, based on the analysis program presented in Part I.

The topic of Part II is called extended analysis. Extended

analysis is a system of organization by which the meaning

structursj and the structures representing the analysis

processes are tied together. Lxtended analysis processes

can dxrectly affect not only static meaning structures b-it

the flow of analysis itself. Th< y handle multi-

sentence texts, treating them as coherent entities/ just

as the sentential analyzer treated sentences as coherent

entities. The discussion of extended analysis treats in

detail two sentence texts i:ucli as:

John hdted Mary. John gave Mary a sock.

John was feeding the deer at the zoo. John gave

a buck some sugar.

John saw a beggar on the street. John gave a buck

to him.

Part II also treats, in broader terms textc in general,

how tht y ikre understood as coherent units, and how the

analysis of one part of a text affects the analysis of other

parts of that text. Some of the work that was the impetus

'ro Part 11 is embedded in Part I.

Contexts have been used in ttie analysis program to

guide the analysis pro:ess, and how this guiding occurs is

one of the main topics cf Part II. So, in a larger sense,

what is presented here is not only a program for the analysis

of sentences, but a t.ieory of contextual effects on this

analysis,

1.2 COMPUTATIONAL UNDERSTANDING

There is not much need to explain why we might want

a progrdm that can understand natural language input. We

just h've to start listing phrases like machine translation,

question-answering, n^ n-machinr.; interaction, computer-aided

ins ruction, and so on. Common to all of these is the need

tor programs that can respond in useful ways to information

expressed in a natural language.

However a computational understanding (CU) program

can UP rr.ore than just a program that responds usefully to

natural language input. Tasks like the above determine

what results a program must achieve, but they do not nec-

essari / detarmine the methods a program can use to achieve

these results. Wo have had as a goal in this work a CJ

system that could also be a model of human comprehension.

Given the obvious facts that computers aren't built

from neurons and people don't have magnetic memories, what

does it mean to say that a computational process is a model

of a human one? The definition here will be that one pro-

cess models another if the same decisions occur in the same

order and for the same reasons in both processes. A decision

is an action of the form "I choose to believe X because I

oelieve A, b, C, etc." X, A, B, C, etc. are descriptions

of situations. Naturally the representation of these des-

criptions will not be the same in a program as they are in

a brain. But we can equate statements in a representation

with beliefs represented in whatever way they are in the

brain.

When a CD system, that is supposed to be a model cf

human language comprehension, processes a text, it produces

a flow of deciöiOns. This flow does not have to be identical

to the flow of decisions someone might follow when compie-

hending the same text. it is unlikely that any two people

process a text in exactly the same way. But we can, though

not rigorously, look at the flow of decisions and decide

if such a flow is consistent with what we know about human

comprehension. If a CU Bytteffl consistently produces such

flows of decisions, then it constitutes a good model of

human comprehension.

The focus then is on the decision making that occurs.

That means that we are interested in what decisions are

made, when they are made, and with what information they

are made. What kinds of structures are bullt--syntactic?

semantic? conceptual? When are they bullt--syntactic be-

fore semantic? while the text is being read? after the

text has been reread several times? On what information

are they bui1t--syntactic structures? knowledge about

politics ?

A working CU system, one that produces acceptable paths

of decisions, must contain answers to all these questions.

It must have mechanisms that make these decisions. These

mechanisms, particularly if tney seem consistent with a

computational model of memory processes in general, form

an hypothesis about the nature of the mechanisms that un-

derly human decision making.

In the next section the CU system of this thesis is

described in terms of the general statements the sy.tem

makes ahout language comprehension and the mechanisms un-

derlying it.

i ■

I I

(i

1 . 3 ASPECTS OF THIS SYSTEM

Because our system is intondad to be a model of human

language comprehension, its existence makes a number of

claims about the nature of comprehension. These claims

fall into two groups. Thpre are claims about general aspects

of comprehension and there are claims about the specific

mechanisms of comprehension.

General Aspects of Language Comprehension

This system has the following characteristics, which

I believe are proper for any model of comprehension:

1) Comprehension is treated as a motivated pro-

cess. It is driven by a constantly changing

set of goals. These goals treat comprehension

as a process of filling out a larger structure.

This structure is a picture of where the dis-

course is going. If such a picture does not

exist, there is a drive to find one. These

drives motivate comprehension at all levels,

from the choice of a meaning for a word to

assumptions about the intention of a text.

2) The process of comprehension is not divided

into separate modes of operation. There is

not, for example, a syntactic phase which pre-

cedes a semantic interpretation phase. Nor

does comprehension switch back ard forth be-

tween phases like these. Instead, anything

can happen at any time. At any point in the

flow of analysis, there are operations manipu-

lating concepts as well as operations interpret-

ing individual words.

3) The knnwlsdge gained at one level in thu an-

alysis system diffuses at once throughout the

rest of ehe ystera. Comprehension involves

many different levels of activity. New word«?

are read in. New assumptions about the future

of the discourse are made. But whenever some-

thing is added or deleted due to this activity,

the news of this change is made available to

all the other processes

4) Comprehension is concerned ith two important

tasks. One is finding information relevant

to the process of interpretation. The other

is removing information that no longer applies.

5) There is a clear distinction between static

knowledge and process knowledge- For example,

the dictionary entry for a word ii the analyzer

may contain process knowledge. This entry

makes no sense when considered apart from a

flow of analysis.

o) The comprehension process is specified in terms

of mechanisms consistent with a more general

model of memory processes. The forms for

representing static knowledge is likewise con-

sistent with such a model.

Specifi Mechanisms

We can characterize the proce 9 of comprehension as a

process of applying dynamically se.ected pieces f knowledge

to a continuing t ream of language input. Dynamic sei.ction

maans that there must be mechanisms for moving infer»., it ion

in and out of active participation in the comprehension

process.

Further, comprehension har. twc

-

:

dimension of tinv. We say that an analyi

point in time

;o dimensions. It has a

'sis begins at one

en } crjds at üome later point. It also has

a dimension of depth. We say tha- an analysis begins at

the surface (i.e. the word) and ends at some deeper level

of conceptual abstraction. There must be mechanisms for

moving the dynamically selected information along both

of these dimensions.

These tasks are done in the system by severaj. basic

kinds of data and control structures:

1) For accesslug in formation--Associations are

used for accessing information. Knowledje

about the comprehension of a language is

associated with word senses. These senses

contain two tyc2s of structures. There are

structures of static forms and structure? of

active instructions. Both of these structures

assume that, when the word is read and these

structures are activated, there will ba other

structures either already present or to come.

These other structures will affect and be

affected by tue structures that make up the

sense of a word. ■;e cannot talk about the
moaning of a word oitside of tne flow of

analysis because the meaning i_s the flow of

analysis.

There is more knowledge about ccmj,rehension

associated with certain words and concepts.

This knowledge is about the larger picture that

should guide the flow of analysis. The informa-

tion is represented as sequences of .-»atterns.

and the positions in a sequence provide slots

in which to placr the results of analysis.

7

3)

4)

2) For passing information through time--The

mechanism for passing information from one

point in the analysis to a later point is

the expectation. An expectation consists of

a specification of a situation and a specifica-

tion of what to do if that sitiation is en-

countered. The expectation is a prediction

that the situation specified will occur. At

the same time, the action specified is informa-

tion that is Ijeing carried along in time. It

is ir.iformaticn about what the predicted situa-

tion means to the process of comprehension.

For passing information from level to level--

Tvo mechanisms are used to pass information

from one level of thought to another. One is

the expectation. The expectation can pass the

information that one type of structure exists

by constructing a structure of another type.

The other mechanism for passing informa-

tion is called the need. When a structure

exists but is incomplete, a need is generated

to fill this gap. That is, a signal is gen-

erated thai, something should be done to fill

that gap. This signal is passed from whatever

level of abstraction that the structure is on

towards the language level. The presence of

a need alters the flow of analysis such that

if the need can be filled, it will be.

For. removing in format ion--Info rmation is removed

in two ways. First, when a large structure

specifying an overall picture is contradicted

8

u
1 ■

0
I

mm

f =

I*

l

by the results of an analysis, a new structure

must be found. The removal of the old structure

removes with it all the static forms and active

instructions it may have includec! it also

removes the needs that the incomplete static

forms generated.

The filling of gaps is the second mech-

anism for removing information. A need dis-

appears when the form it came from disappears

A need also disappears when the gap generating

it has been filled. When needs disappear, the

alterations those needs caused on the flow of

analysis cease.

The system for comprehension thus consists of structure^,

of static forms and of expectations. Tht expectations,

originating primarily in the senses of words, specify the

active instructions for analysis. The mechanism of the need

forms the link by which the static forms communicate with

these expectations. Associations between words and structures

and associations within structures themselves, provide the

paths by which the information is found and later collected

together and removed. The organization of knowledge into

these structures, the drive to complete partially filled

forms, and the making of expectations, all belong to a set

of reasonable general memory processes.

1.4 WHAT THE SYSTEM DOES

Since only Part I of this thesis is programmed as yet,

we can only talk about output from the Part I form of the

analyzer.

The analysis done by the program of Part 1 is one of

comprehension rather than of parsing. The output of a simple

sentence like "John gave Mary a book," for example, is

not a description of uhe syntactic relationships between

the words appearing in that sentence. In fact, none or the

words in the sentence appear in the output. Instead the

output is a structure of concepts, involving a basic action

of transferral of ownership. The ownership of an object

that is a book changes from a person named John to a person

named Mary. The person responsible for this change is the

same John who previously owned the book. Because the out-

put of analysis is meaning and not syntactic structure, the

anal-^er produces this same output for the sentence "Mary

received the book from John."

The meaning structures will be described in detail

later, but an example cf what they look like can be given

here. Me show here output produced by the analysis of a

rather long sentence. We chose a long sentence for two

reasons. First, the output from the analysis of this example

shows many of the different meaning elements that can be

used. Second, the example demonstrates that long sentences

are not a problem for the analyzer. This is because the

analyzer doesn't try to do the whole sentence at once, but

rather takes it piece by piece, as it reads the sentence

from left to right (although the output does not have to

appear in the same order--see the "prevent" example that

appears next).

10

- -

The sentence is : JOHN HURT MARY BECAUSE MARY IMFORHED

BILL THAT JOHN ADVISED RITA TO PREVENT BILL FROM BUYING

THE BOOK BY GIVING THE BOOK TO JOHN.

The output, obtained in 25 seconds of processing time,

is (comments in lower case):

TIM00 :

TIM01 :

TIM02 :

7 IM0 3 :

TIM04 :

TIM05 :

TIM0fc :

((CON

((ACTOR

((VAL T))

((BEFORE . NIL))

((BEFORE TIM01 X))

((BEFORE TIM00 X))

((AFTER TIM03 X))

((AFTER TIM03 X))

((BEFORE TIM0S X))

(MARY)

(MTRANS)

TO

(CP PART (BILL) i

FROM

(CP PART (MARY))

MOBJECT

({ACTOR (JOHN)

(MTRANS)

TO

(CP PART (RITA))

FROM

(CP PART (JOHN))

This is e list of time
relationships. Every
event has a time which
specifies when that
event occurred with
respect to other events,

This part of the output
structure says that Mary
told Bill that. . .

...John had told Rita
that...

11

MOBJECT . if Rita gave the

((CON book to John..•

((CON

1(ACTOR (RITA)

(ATRANS)

TO

(JOHN)

FROM

(RITA)

OBJECT

(BOOK REF (THE)))

MODE

1NIL)

TIME

(TIM06))

((CON then Bil 1 wou Id I
.,.,«,«,. ,„, unable to buy the book ((ACTOR BILL)

kjj and. . .
(ATSANS)

OBJECT

(MONEY REF (A))

TO

(NIL)

FROM

(BILL))

TIME

(TIM05))

12

MODE

(NIL)

TIME

(TIM03)))

TIME

(T1H02))

((ACTOR (NIL)

(ATRANS)

OBJECT

(BOOK REF (THE))

TO

(BILL)

FROM

(NIL))

TIME

(T1M05)))

MODE

((NEG)))))

((ACTOR (RITA)^T (JOY)^ F (JOY))

INc "-'t^is would
make Rita

^2) happier.

TIME

(T1M04)

MODE

(NIL)))))

13

_

((CON (UCTOR (JOHN)*—♦ (DO)) TIME (TIM00) MODE (NIL))

T(ACTOR (MARY)fe^T (UNSPEC)) INC Bf-cause Mary told
Bill all this, John

(-2) did something to

TIME hurt hür-

(TIM00)

MODE

(NIL)))

TIME

(TIM00)

MODE

(NIL))))

We said that the analyzer, in building a structure like

the above, went from left to right, but that the output did

not have to reflect the order of things as presented in the

sentence. Ihis is because the analyzer can operate freely

on structures like the above, redoing old parts as well as

adding new ones. For example, the analysis of "John pre-

vented Mary from going to the store by taking the bicycle"

involves building one structure, and then modifying and ex-

panding subparts of that structure. "John prevented Mary"

is analyzed as; "John did something which caused Mary to be

unable to do something." When "from" is read, it is assumed

that it introduces * clause specifying what Mary can't do.

He-ce, when "Mary going to the store" is analyzed, the mean-

ing structure is changed to "John did something which caused

Mary to be unable :'» go to the store." When the "by" is

read, it is assumed that it introduces a clause specifying

what John did. "Taking the bicycle" is analyzed and the

final meaning Is "John took the bicycle which caused Mary

to be unable to go to the store."

The analyzer is not limited to verbs as a source of

tonceptual frames. For example in "John gave Mary a beating"
14

.

- -
-

u

..

the conceptual frame is provided by "a beating". The re-

sult of analyzing this sentence is the same as the result

of analyzing "John beat Mary," namely that John hit Mary
iepeatedly.

The conceptual manipulations of conceptual frames can

be fairly complex. In "John gave Mary a headache," "a

headache" provides the basic conceptualization, but several

things are added- First, of course, Mary has a headache.

Further, John did something to cause Mary to have a head-

ache. Hence a specification of causation i

what was caused was not havino

to havi

s added. Finallyj,

a hear'.^he, but rather coming

'e a headache. Hence the state of having a headache

becomes instead a change to the state of having a headache.

During the analysis of a sentence, the analyzer makes

»Any predictions. For example, when "prevented" is read

it predicts that "from" and "by" will introduce clauses

specifying what was prevented and how, respectively. When

"gave" is read it predicts that noun phrases for both a

human and a physical object will follow, that the human is

the recipient of "gave" and that the physical object Is the

object. Thus the analyzer »Ssumes that "Mary" is the re-

cipient of "gave" in "John gave Mary...", but that "a

rock" is the object of "gave" in "John gave a rock...."

To some extent, the analyzer as programmed already

includes contextual effects, although ^ systematic treat-

ment of context is not given until Part II. For example,

the sentence "John gave Mary a sock" is normally inter-

preted by the analyzer as meaning that John transferred

ownership of an item of footwear to Mary. If, however, the

analyzer had previously handled a sentence like "John hated

Mary," then it assumes that "John gave Mary a sock" means

U

that John hit Mary. It does this usino a prediction thai

Johr will do something to hurt Mary because he hates her.

These then are some of the kinds of analyses that are

produced. The stress in all of them is on the construction

and modification of meaning structures. What is also im-

portant are the ways in which these analyses are achieved.

But to explain this, we must proceed to a fuller description

of the analysi-j process.

16

PART I

uUIDE TO PART I

u

u
' -

In Part I, we step back from the general claims of the

introduction and focus on the process of analysis more specif-

ically. In particular Pdrt I is oriented around the descrip-

tion of a working analysis program. This program is de-

scribed in detail, giving exrimr;]e analyses as well as the

definitions of words that led to the analyses. This is

done ir Chapters 7 and 8.

Tne most compact and accurate way to describe the

analyses and definitions is to use the forms that the analy-

sis program does. However, this requires tnat the reader

learn two "languages" first.

One IF the language of the representational system.

With this language we express the X, A, B, C, etc. in the

decision "I choose to believe X because I believe A, B, C,

etc," This language is called Conceptual Dependency and

is described in Chapter 5. In Conceptual Dependency, be-

liefs are expressed using a small set of 1anguage-free

objects and relationships. The goal of the analyzer is to

assign to a text a Conceptual Dependency structure. This

structure should express a belief that is a reasonable in-

terpretation of the text.

The other language used expresses the active part of

the decisions, i.e. the "I choose to believe" and the "be-

cause I believe". Ths basic element or this language is

the expectation. An expectation is a specification of a

situation ("I believe A, B, C, etc.") paii^d with a specifi-

cation of an action ("I choose to believe X"}. When the

17

= .

Situation specifle" is encountered, the action associated

is performed. Making a decision is therefore the trigger-

ing of an expectation. All this i^ described in Chapter 6.

Chapters 2, 3 and 4 introduce and motivate the direc-

tions that the developments in Part I take. Chapter 4 is

concerned with the reasons why things are done the way they

are. Chapter 3 discusses briefly some of the alternative

approaches that could have been taken. And because there

is a long stretch of theory (fron. Chapter 3 through Chapter

6), Chapter 2 offers some pictures of what it's all about

for the reader to keep in mind. Of particular importance,

I think, is the flow table in section 2.4. The theoretical

discussion looks at the various functions one at a time,

but the flow table present- them in their natural habitat,

working together in a flow of analysis.

IB

CHAPTER 2

L
2. 1

SENTENTIAL ANALYSIS

INTPQDUCTrON TO SENTENTIAL ANALYSIS

Describing the analyser in detail means specifying two

aspects of it: the theory and the program. The program

can be specified by presenting the functions with which it

Ls bui.it and showing how these functions are used in the

task of analysis. The program aspect of the nalyzer oc-

cupies the latter two-thirds of Part I. Howe'er, the con-

struction of the prograrr is not haphazard. xC is the pur-

pose of the first third of the description to present the

concepts and motivations about which the program is organ-

ized. This is the theoretical aspect of the analyzer. To

motivate this theoretical description, it is in turn help-

ful to talk briefly about the program to which the theory

leads. In particular much can be said about the program

from the outside without worrying about its internal machin-

ery .

The program lias the following properties which dis-

tinguish it from other analyzers:

1) Its object is not to parse a sentence into a syn-

tactic structure, be it surface or deep. Its

goal is to discover the meaning of the sentence,

in the context in which it appeared.

2) Even as a tool, syntax plays a small role in the

analysis. Of greater importance to the program

are the partial meanings that are found during

the processing. These provide much of the in-

19

formation necessary for continuing tlso .m.i I v:-.»•;,

3) There is not a clear division botwoen limjuisM t c

and non-1inguistic knowledge. Beliefs and in-

ferences can play an jmporta. -art in the deter-

mination of meaning. Tne repieaentat ion used al-

lows t.e analyzer to interact when neceasary with

a memory model.

4) The sentences understood are about human behavior.

The program m^kes assumptions about the normal re-

lationships involving people with other people,

and people with o^ject-i.

The expectation is the basic mechanism used by the ;ro-

gram. An expectation is a description of a sitiation that

is recognized as likely to oecome true in the necr future.

Further, a^ ociated with any expectation is a set of actions

to perform, actions that are appropriate in the expected

situation. In general an expectation organizes information

so that one can respond appropriately to a situation as

soon as that situation is recogrized. The importance of

an expectation is not just that it prepares a set of ac-

tions for use if needed, but also that it narrows how future

-ituations are perceived. An expectation looks only for

certain features and ignores any other features of the real

situation that may be present. In language processing, for

example, an expectation may predict that a certain preposi-

tion has some particular meaning, and thus the many other

possible meanings will not be seen. While we can imagine

expectations for many situations, of concern here are those

expectations that are closely related to language compre-

hension, as well as what their sources and their effects

are.

'rhe demon mechanism found in Charniak (1972) is similar

20

I

ü

to the expectation. Charniak uses expectations about human

behavior in specific context to help solve problems of

anaphora. However, language processing is byparsed and the

semantic representation for th demons is not generalizahle

beyond the particular examples considered.

The program here depends upon the use of a general

representaLional system for meaning. Expectations about

real world situations can be described In nariy different ways

in English, but the program must be able to recognize these

situations no matter how they are described. Further, with

a meaning representation, it is possible for an expectation

to be generated from a non-linguistic source and still be

able to communicate with the analysis. For example, if I

hear the sentences "John was hunting. He shot a buck," I

will interpret the second sentence as meaning John shot an

animal, not that he spent a dollar. I would make this same

interpretation for the same reason--!.e. from the same

expectation--!f 1 saw John coming out of the woods with a

rifle in his hands, and he told me he'd shot a buck.

21

2.2 HISTORY OF THE ANALYZER

The description of the theory and programming of an

English analyzer will be a static one, tnat is, it will

look at the system as something in one fixed and final form.

But this kind of description omits important aspects of the

topic just as much as a synchronic description of a langua.-1.-

omits important aspects of that language. For example, a

static image cannot show whether the system is a blueprint

for future work or the product of past effort. And it is

important to know this when trying to decide if the claims

made for the system are just beliefs or if to some extent

they have been subJtantiated or inspired by actual exper-

ience. For this and other reasons, a brief history of the

growth of the analyzer will be given before the more detailed

desciiption of its workings.

The work on this particular system took place over a

one year period at Stanford University. Prior to this

there had been an analyzer written (see Schänk and Taslar (I 70))

which also went from natural English sentences to Concep-

tual Dependency representations, but beyond this common goal

there is no real connection between the two efforts.

The stages of development of the projiam were;

1) A general outline of an approach to analysis-

At this time, fairly general assumptions were

made about the purpose of writing an analysis

program, and what sorts of problems of language

analysis should be focussed on. Also at this

stago a simple control structure was decided

2 2

I

.

upcn such that most of the programming work

work would be in the form of dictionary ex-

pansion. Finally, certain specific sentences

exemplifying the kinds of problems of concern

were chosen -JS the initial goals of the pro-

gramming.

Writing the program-First a very "small control

program was wricten. Then the simplest of

the sentences from stage (1) was chosen ("John

gave Mary a book"). After deciding what seemed

to be occurring during the analysis of the

sentence, definitions for the words in the

sentence were written that would follow the

same path of actions. Sometimes the defini-

tions required new functions and the control

structure had to be expanded to be able to

handle them. The process of taking an examp .?

and expanding the vocabulary to handle it was

the basic means of growth in the analyzer.

Words were not considered by themselves but

in their interaction with other words in speci-

fic contexts. Tne sentences chosen for each

iteration of the expansion were intended to be

as different from the previous ones as possible,

in terms of the kinds of processes invoked.

An important step in the expansion loop was to

test the program on a file of previously re-

solved examples. Tnough changes in the analy-

zer were normally made only to definitions of

specific words and hence did not affect the

actions of other parts of the analyser, still

it did happen that an injudicious sharinn of

global variables or something similar led to

the destruction of previous successes. The

corrections required were never important the-

oretically however.

3) MARGIE-The next stage involved the addition

of a motivation for choosing sentences for the

expansion process. Being developed concur-

rently with the analyzer were a deductive memory

systtu using Conceptual Dependency represen-

tations as input and output and a generator

using Corceptual Dependency representations

as input and English sentences as output. It

was decided that the three programs should have

a common data base su that they could be used

as one entity. However, no particular domain

of discourse was chosen. Rather, for each of

the programs, sentences and conceptualizations

that demonstrated ^portant features of it

were picked by the worker developing the pro-

gram. The othar programs were then extended

where needed to allow these demonstrations.

4) Diplomacy-At approximately the same time as

stage (3) a different motivation was applied

to the choice of sentences in the expansion

process. In contrast to stage (3) where the

interest was in demonstrating directly certain

aspects of the system, in stage (4) the inter-

est was in handling a specific task domain.

The domain wa* the game Diplomacy. Diplomacy

although a board game, differs strongly from

others like chess and go in that it depends

heavily on interpersonal communication. Fur •

24

!

i

ther, success in the game depends prim.nilv

on being able to influence, honestly 01 dis-

honestiy, other oeople to do what you want,

and at the same time judge how and why some-

one else is trying to use you. Hence there

is a great deal of concern with human percep-

tion and comnunication of human behavior. A

number of words were added to the «.nal^zor's

vocabulary to help it to deal with this do-

main. All of the work on thif particular ex-

tension of the analyzer was done by Paul Martin,

basing his choices on sentences that had been

recorded during actual Diplomacy games between

humari players.

Description-Therp is a very noticeable effect

upon the development of a system when the de-

signer has to stop, organize, and summarize the

system in order to describe it and its goals

to other people. This work on the analyzer

has been described in successively greater

detail in the followin g papers: Goldman and

Riesoeck (.973), Riesbeck (1973), and now here.

Not only are oversights and ad hoc ireasures

suddenly made embarassingly clear, but more

importantly patterns are seen, initial assump-

tions are clar fled and generalized, and a bet-

ter view of where to go next is obtained.

What follows therefore is the result of these five

stages of work. The program itself has beer expanded and

modified at each point. The functions described are the

ones that were found necessary as the stock of examples

grew. The theoretical implications of ■arious aspects of

2r.

the program are also the outcome of these five stages. In

particular most of the relationships between standard linguis-

tic concepts and elements of the analyzer were realized dur-

ing the descriptive stage of development. And finally the

form of the description of the analyzer is a product of the

way the analyzer grew ar.d also of the previous ciutempts to

describe it. Specific functions appear before their use in

structures, so that these structures can be given compactly

and exactly. The theory appears before the program because

much of the theory was developed first and shaped the program

in crucial ways. And an overview appears before the theory

to suggest the nature of the concepts with vhich the theory

is concerned.

26

2. 3 iHE PROGRAM ITSELF

The program itself is in two parts: a monitor and a

dictionary. It rnns on the Stanford PDP-IO system at the

Stanford Artificial Intelligence Laboratory. "he dictionary

xs written in Lisp 1.6 (see Quam and Diffie (1972)) while

the control program is in Mlisp (see Smith (1970)), an

Algol -Like languago that is translated into Lisp 1.6. For

normal expansion and debugging an interpreted version of

the control program is used, while for demonstrations a

compilei copy is made.

Because the program was not designed with a specific

task domain in mind, net to be impressive in demonstrations,

nor to stuay the difficult questions of large data base man-

agement, the vocabulary i*- fairly small. There is a core

of about 60 vprh'= plus their attendant prepositions, and

enough nouns and adjectives to construct long sentences

without being forced to unnatural actors and objects. be-

cause of the principles guiding expansion in stage (3),

however, ..ach of tl" ^se verbs demonstrates quite different

aspects of analysis. Some stress manipulations performed

directly upon conceptualizations. others stress the opera-

tions needed to reach these conceptualizations f.-om various

word const ruetiuns.

The program, with the Lisp interpreter and the Mlisp

translator and sufficient working space, filled about 50,000

PDP-10 words. When the control program was compiled and

loaded without the Mlisp translator, the total was 35,000

words. The CPU time in the interpreted version for hardlmg

sentences including those that will be discussed was between

.'7

5 and 10 seconds, while it was less than 2 seconds in the

compiled form. Both time and space could have been greatly

improved if that had been of interest. For example, predi-

cates are re-evaluated even though it is known that none of

their parameters ha'.'e changed and re-evaluation could be

avoided. Also many of the dictionary entries have segments

that could be shared with other entries. But the purpose

of the program was to be a concrete expression of a theory,

such that changes in the theory rould be tested and, at the

same time, extensions to the program would add to the theory.

For this task the analyzer program was always satisfactory.

28

• *

0

2.4 OVERVIEW O» THE ANALYSIS PROCESS

I
L

The analysis of n sentence is driven by the executioi,

of programs attached to -«ach of the words thr't occu- in

this sentence. But the programs associated witn a word

are not executed immediately upon the discovery of the word.

Instead, to each program is attached a conSition which the

stöte of the analysis must fulfill before that program is

executed. This pair, of condition and program, is a

request, and the two parts are called test and action respec-

tively. The whole package of requests which is attached

to a word is called the ser.se of that word. Also part of

the sense of a word is a set of features that describes

various passive apsects of the word or the concept to which

it refers.

The analysis of a sentence consists of two activities:

1) The requests attached to a word are added to

the li^* of requests active, i.e. those re-

quests that have previously been added, but

whose conditions have not yet been fulfilled.

2) The list of requests is rechecked whenever new

words or concepts occur to see if any of the

conditions of the requests have become satisfied.

If so, the actions associated with these satis-

fied conditions are executed, and then the list

is rechecked to see if any more conditions have

become fulfilled.

These two steps make up the monitoring control program

of the analyzer. This program looks for knowledge about

2 9

the language relevant to the text being analyzed and ap-

plies the information that is found.

There will be many examples given later showing ex-

actly how the analyzer works. However, a general idea can

be obtained by following, in less detail, the analysis of

a simple example. Consider the sentence, "John gave Mary

a beating." It is assumed that this sentence has the same

meaning as, "John beat Mary." The chart that follows shows

an outline of the basic flow of decision and prediction

that the analyzer goes through with this example. "NP"

is, of course, an abbreviation for "noun phrase". bnder

the heading "Requests Waiting" appears only the test portion

of each request. When the number of a request appears un-

der the heading "Requests Triggered", it means that the

test of that request was fulfilled. The action portion

of a triggered request follows, under the heading "Actions

Taken".

30

4.

t

ISTEP WORD REAT REQUESTS WAITING REQUESTS TRIGGERED ACTIONS TAKKN f

0
i

none 1-is there an
NP?

none none

1 John 1-is there an
NP?

1 assume "John"
is subject of
the verb to '
follow

5

i

j

gave T-is the current
NP a human?
3-is the current
NP an object?
4-is the current
NP an action?
5-true

5
i

assume the word
"to", if it ap- !
pears, introduces j
thp recipient of
the "giving" j.

3

1
i

Mary 2-is the current
NP a human?
3-is the current
NP an object?
4-is the current

2 assume Mary i -
the recipient
of the "giving" j

i j
NP an action?

! 4 I a 3-is the current
NP an object?
4-is the current
NP an action?
6-true

6 save the current
list of requests
and replace it
with:
7-does the cur-

| rent word end ,1
an NP? 1

5
f
1

beating 7-does the cur-
rent word end
an NP?

none
— i

none

|

6

i

period 7-does the cur-
rent word nnd
an NP?

7 build the NP
"a beating" and
reset the list
of requests j

7 none 3-is the current
NP an object?
4-is the current
NP an action?

4
i

assume the NP
action is the
main action of
the clause, the
subject (John)
is the actor and
the recipient
(Mary) is the
object

31

After Step 7 there are no more words to be read and no

more requests are triggered, and so the analysis stops. The

final result is that John beat Mary, i.e. that John hit Mary

repeatedly, presumably with his hand. Most of the conceptual

action except for "John" and "Mary" came from the dic-

tionary entry for the sense of "beating" that was assumed.

Step 0 is, of course, the same in any analysis. In

step 2 there is request 5 which has a test that is always

true. Such requests are executed immediately. This one

changes the sense of the word "to", which might occur later.

This is en?1 cf the basic ways in which the analyzer tries to

avoid problems of ambiguity. The prediction made might be

wrong, but it specifies the most reasonable meaning of "to"

to try first. Step 4 shows how noun phrases are built. A

noun phrase introducer, like an article, temporarily halts

other processing until a noun phrase is collected. Step 4

also shows an instance of one request changing the set of

requests waiting. Step 7 involves the direct manipulation

of conceptualizations. Both Step 4 and Step 7 show how far

removed from syntactic manipulations the actions that oc-

cur during analysis can be.

A basic feeling for the flow of action during analysis

is important for reading what follows. The form of the pro-

gram used has a number of implications and there will be

many comments on these implications. How concepts like meaning

and ambiguity relate to requests and senses, what role syntax

plays, what aspects of a theory of language comprehension

are stressed in this format, and other such topics shall

be touched upon.

32

L

i:
D

i

2.5 SENSE VERSUS MEANING

The term "sense" has a very specialized meaning for the

analyzer. It is the label for a package of requests and

features that together describe how a word with that sense

interacts with other words in a text. A sense, therefore,

is not directly equivalent to the meaning of a wed, i.e.

to a conceptual representation. It differs in two ways

from the idea of meaning:

1) The same sense of a word in two different con-

uexts may produce two different meanings. For

example, to "break a promise (vow, oath, rule)"

while containing a different meaning for "Lreak"

than that found in "break a bottle (table, \in-

dow)" does not require two different senses of

"break". One sense, containing a request that

tests for a physical object of the "breaking"

and another request that tests for an obligation

as the object of "breaking", will be able to

handle both uses.

2) More importantly, a sense is distinguished from

the idea of meaning in that the task o^ a sense-

is to contribute to the interpretation of the

text as a whole, and not cf the word alone.

There may be no simple relationship between any

subpart of the final conceptualization and some

word from the initial sentence. For example,

the interpretation the analyzer gives for "Johii

gave Mary a beating" is that John hit Mary re-

3 3

peatadly. The contribution of the sense of

"give" used is to take the conceptual struct-

ure of "beating" and insert John and Mary ar

the participants, in the correct roles. "Give"

itself, however, produce? no conceptual piece

of its own. The role of "give" in the sentence

is only definable in terms of the actions that

i,.s sense performs upon other conceptual «struct-

ures .

Because a sense is a collection of requests, any change

to that collection--addition, deletion, or modification--

in effect creates a new sense. It is a matter of pragmatics

w" »ther the changing of a word's sense should be done by

changing the list of requests it has or by replacing that

list with a prepared one that embodies these changes. If

there are several commonly used packages of requests for a

word, then each of these can be saved and used when some

request from some other word or concept calls for it.

34

CHAPTER 3

PREVIOUS WORK

hav«

The analyzer just described is b-'sed on some very

fundamental assumptions about language processing. These

choices are not unexpected ones, from an histtrical view

of computational linguistics. rhey follow a trend towards

greater and greater emphasis on semantic and conceptual

matters rather than on syntactic ones. But as a result,

there is not much relevant preceding research from linguis-

tics and computational linguistics, both of which

stressed the syntactic approach.

There are two previous computational analysis systems

though that have been highly influential on the directions

that lat*>r work has taken, and no nev/ effort can ignore

them in discussing alternatives. I refer to the work of

Woods (1970) and Winograd (1971). The former produced a

very successful syntactically oriented parser. In doing

so he verified a set of mechanisms of interest to other

designers of syntactic systems. Winograd produced a com-

plete system, an integrated set of programs, which was able

to carry on discourse with a human about a changing world.

However, each component was limited in domain. As with

Woods' work, both the success achieved and the presenta-

tion of a tested set of mechanisms for attaining this goal

made Winograd's work important.

Before describing where I

where I ha ve not gone and wh
have gone I must describe

to the work of Woo
V- What assumptions were basic

ds and Winograd tnat kept me from expand-

35

ing on either of their approaches? And what assumptions

were basic to the analyzer that was developed? The first

question shall be answered here, and the second in the next

section.

The parse.- written by Woods is a syntactic one. The

mechanism for parsing is the augmented transition graph.

It enables a programmer to specify a grammar for a language

in a form that can be understood by a linguist and at the

same time can also be used by a program to assign syntactic

structures to sentences in that language. The basic format

is a transition graph, that is, a description of a flow

of decisions in terms of nodes (or states) and arcs between

these nodes. An arc is associated with a condition and

traversing that arc is equivalent to deciding that that

condition is true. The parsing task is basically one

of recogrition. At the beginning of the analysis the pro-

gram is at the initial node of the graph. From this node

lead a number of arcs, each of which, in the simplest sys-

tem, is a condition on a word, for example that it is a noun

or a verb. The first word is taken from the sentence. From

the set of arcs whose condition is true of the word, one

is chosen and traversed. This leads to a new node and hence

a new set of exit arcs. The next word is taken from the

sentence and so on. Certain nodes are specially treated.

If the sentence is finished wnen the program is at one of

these nodes then a successful parse has occurred. Otherwise

an error has occurred and backup must be done. This kind

of system is much too limited for handling unrestricted

English. Two mechanisms are added that extend the power

of the graph concept without destroying its clarity.

One of the mechanisms is a set of registers. An arc

predicate can refer to them and the traversal of an arc

may change their values. In this way information can be

36

passed from one step to another.

The other mechanism is recursion. Arcs are not limited

to being conditions on words. They may refer to struct-

jrsl conditions that are themselves recognized by augment el

transition graphs, including the one to which the arc

belongs. Thus, instead of an arc looking for a noun, there

can be one looking for a noun phrase. Together with iunc-

t.vons for passing register values through such calls, these

two mechanis: make the transition graph powerful enough

to handle the syntax of a natural language like English.

The role ^ c semantics in this system is to be a check

and guide for syntactic analysis. At certaii points seman-

tic routines are referenced in order to try and help out

syntactic decisions, but because semantic routines tend to

be powerful but slow, it is the job of the designer to balance

the use of semantic and syntactic moans, so that semantics is

done only when it can improve upon fairly fast syntactic

routines.

Backtracking is very simple in graphs. It is done when-

ever the parse: fisds itself at a node from which no exit

arcs have conditions which are satisfied. When this occurs

the parser returns to the node previous to this one and tries

another possible exit from that. If there are none, back-

tracking occurs again and so on.

Winograd's work has a syntax based loosely on the linguis-

tic system of Michael Halliday (1970). Sentence are looked

upon as sets of choices of features, features which are

grouped according to the rank order of the sentential unit

to which they apply. Thus, there are features of words, of

phrases, and of clauses. Some features are possible options

(in the generative grammar sense) only if certain other

features are present or absent. A sentence like, 'The three

37

big red dogs ate a raw steak," Is parsed not inti a syn-

tactic tree, such as:

NP VP

DET NPl^ VB
1 X \ 1

The NUM NP2

1 /\
3 ADJ NP2

1 /\
big ADJ NP

1
ate

NP,

/ \
DET NP1

/ \
a ADJ NP1

red noun

raw noun

steak

dogs

but into levels of features as belows

CLAUSE

DET NOUN

VG
I

VB DET

i
a

1
ADJ

I
raw

NOUN

I
steak the 3 tig red dogs ate

The parsing task is to find patterns in sentences and

c'-'cide what features they indicate. Once these features are

found, semantic routines that are attached to them are exe-

cuted. These routines, which for Winograd are the meanings

of the features they are attached to, are not concerned with

building the parse tree as they are in Woods, but with the

manipulation of a world model. And although there are fea-

tures that apply to the sentence as a whole, e.g. declara-

tive und interrogative, there are others that occur closer to

the word level. Because of this, some semantic routines are

executed before the processing of the sentence is completely

f i nished.

Further in contrast to Woods, the homogeneity of pro-

cesses is lessened even more by the attaching of specialized

routines called demons to certain function words, like "and"

38

and "or". These demons are procedures that interrupt thv

normal flow of parsing to take care of the special needs ct

the words to which they are attached.

Backup is greatly affected by this approach where a.

feature once recognized can cause fairly complex programs to

ce executed. Unlike the transition graph model, the flow

of actions in Winograd's parser is not easily descrinable.

A benefit of using a homogeneous, restricted set ot func-

tions such as WooJs' is that decisions can be retraced auto-

matically. But in a system where procedures are of many

kinds, other means must be- used to m-jet the problem. One

possibility is to use the decision point capability of i l«n fu

age like PLANNER, With this device decisions can be marked

as being places from which to start over if something goes

wrong later. However, the approach favored by Winograd is

that an intelligent analyzer should be able to decide where

it should start over, by looking at the nature of the mistake.

Comparing my analyzer to the wor'. described above brings

out some similarities. For instance, the control structure

1 have used is similar to the augmented transition graph of

Woods. In both cases the process of analysis moves from

one tet of actions, each contingent on some situation, to

another, and a large part of the analysis consists only of

these transitions. But the control structure is about the

only thing in common between the two systems. The content

and intent of the functions involved a^e very different. In

content. Woods' functions ask questions of syntax. In in-

tent those functions are meant to build parse trees, syntactic

descriptions of sentences. In contrast, the functions of

the analyzer to be described here ask questions about the

relationships of words and concepts, and about the conceptual

structures communicated by the sentence whihh have leer.

J9

assumed so far. This is the content of the analyzer's func-

tions. In intent, the analyzer is trying to build a unified

conceptual structure that is the meaning of the sentence.

For this, syntactic structures are a tool and no more. Ard

when it comes to backup, there is no intention that this

should be a simple retracing of the decision path. Given the

number of different things that the functions of the analy-

zer do, retracing does not seem at all reasonable.

The heterogeneity of functions is a similarity between

the analyzer and Winograd's system. But there is still in

Winograd's work an emphasis on syntax. Winograd's is a

language processing program that locks for certain syntactic

constructions. This program can be interrupted, but the

/■asic flow of the system is still one of syntactic analysis.

In contrast, my analyzer can be considered to be nothing but

interruptions. Some words have more drastic routines than

others, but all of them can play an active role.

This difference between Winograd's werk and my own is

reflected in the fact that there are no explicit specifica-

tions of global syntactic structures in my analyzer. Struct-

ured patterns, patterns that can be held apart from the

words involved, do not occur here. Implicitly such patterns

can be there in the same way that any consistently applied

process can be described by the patterns of its behavior, but

explicitly there are no such patterns.

Backup in the analyzer, as it is planned, is distinguished

from the approach of WocJs and like that of Winograd in that

there is no backing up to decision points. Rather the analyzer

begins again, starting with some point in the surface of the

sentence, with certain choices ruled out and certain sub-

analyses left alone. The cboicea that are forbidden, the sub-

analyses that are left alone, and the point at which reanaly-

4 0

sis begins, all this should Lo dotormi n.i!1 li' by roiitisu--:

that look at the problem that has arisen and make guesses

about the cause. This is counter to a decision point aech-

anism, the use of which would be making an implicit- cla.m,

that when peopl3 make decisions, they expect them to go

wrong. But the problems that cause backup are not expected

The/ are surorise^. A joke such an, "I wa-J on a hunt-

ing expedition. 1 shot two bucks. It was all I had," de-

pends on this elome.it of surprise. Unfortunately savin.!

this about backup is roally saying only that backup is too

serious a problem to be handled with one simple mechanis":,

intelligent routines that can direct reanalysis are still a

thing of the future.

The representation of meaning is another dividing point

between this work and the others. For Woods, the semantic

base is defined specifically for the task. Thus there is

a highly 'oecialized semantic base for handling lunar samples.

This allows him to represent, in a manipulable but non-ex~

tendible form, fairly complicated entities and relationships.

The manipulations however are for the most part information

retrieval actions, that Is, search and pattern match routines

or. canonical forms. Winograd's baie, on the other hand, deal:-:

with more concrete entities and relationships, namely blocks

and their positions in space, and actions that involve changes

in these relationships. With this base the program ib able

to perform more complex inferences than Woods', and do more

than retrieve pre-stored information. However it is limited

to simple physical objects and relationships, and it is not

clear how well the system could be extended to a data base

involving beliefs about people and objects, about probabl

intentions and normal functions.

In the analyzer the base is the Conceptual Dependency

41

(CD) representation system, which has developed from the

work of Roger Schänk (lr!72). The primitive units and

basic relationships have been worked out independent of

particular tasks. The overall criterion is that CD graphs

should differ if and only if the meaning being represented

differs, excepting differences due to logical connectives.

It is thus intended that two sentences have the aame CD

representation if and only if they are paraphrases.

This representation has been designed with an emphasis

on the kinds of concepts people use in dealing with other

people. Concepts like beliefs, communication, intention,

reasons, and results, are the focus of study. More abstract

systems like set theory can be elegantly formalized and

efficiently programmed, but have little to do with human

concerns.

The distinctions between the analyzer and the other

two systems are, 1 believe, quite basic. They stem from

differences in philosophies. The goal of the development

of the analyzer has not oeen one of building an imnediately

practical understander of the English language. Nor has

it been an experiment to see how much can be done with a

small, restricted set of functions. It has been a search

for mechanisms that seemed reasonable for people to use

when they understand language. There were basic assumptions

dbout the nature of the output of analysis, such as how

deep comprehension should be taken, before it became a mat-

ter of non-1 mguisti c cognition rather than language analysis,

There were also assumptions about the nature of the input

to the analyzer, about what information came from syntactic

patterns, what from inference, what from world knowledge

and so on. The designing of mechanisms specific enough for

programming was directed by some assumptions, led to the

rf-cognition of others, and caused the modification of

4 2

some that had been accepted.

BesideB the work of Woods and Wino^rad, there is an-

other effort involving language analysis that has not yet

had the influence upon the field that these two have had.

However, it shares several basic features with the work

to be described. It is a very distinctive approach; it

shuns the use of syntax in the extraction of meaning; it

has a well-defined, .vroad-base semantic representation

system, and its mechanisms are the basis for describing

a theory of natural language inference. I refer to the

work of Yorick Wilks (1973a, b) at Stanford University.

His effort has been oriented not about analysis it-

self but about the total task of machine translation. The

stress of his work though has been on the analysis portion.

It is up to the analysis routines to take English texts,

disambxguate the words and semantic relationships in-

volved, and settle questions like anaphoric reference, to

the point where the generation routines can construct French

texts as output. There is a working program that is quite

impressive.

Briefly described, and ignoring the formalism, the

system consists of a number of routines, each of which takes

the output of some other one and creates a new structure

with more relationships between the semantic elements than

before. Eventually there is a structure ready for genera-

tion into French. The first of these routines takes the

basic input text and fragments it, using various key words

and rules about special cases. The fragments of text are

then passed to a routine that looks at the possible senses

each word can have. These senses are expressed by formulas.

Formulas are list structures made up of elements. There

are sixty primitive semantic elements, divided into five

-13

different classes: entities (MAN, STUFF), actions tKOKi'K,

DO), types (KIND, HOW), sorts (CONTAINER, GOOD), and

cases (SUBJ, TO). Each formula» i.e. each word sense, has

one element that is its head. The first step in the choos-

ing of word meanings is to form templates from the heads of

the formulas that appear in the text fragment. Bare templates

are simple triples of elements in the pattern (actor action

object). There is a list of permissible bare templates.

Each of the possible combinations of word senses forms a

template, but only those which appear in the list are kept.

This causes some reduction in the number of possible word

sense combinations. Then each of the sense-formulas in the

template is checked for specifications of preferences about

the other elements ir; the template. The templates that

have the greatest number of preferences satisfied are kept

for the next stage. Eventually, if there still exists am-

biguity, i.e. several templates, a set of Common Sense

Inference Rules (CSIR) is applied. These take a template

and produce a new one, an inference from the old. These

new templates are then used to try and resolve the dif-

ficulties. For example, in "The soldiers fired at the women

and I saw rjeveral fall," there is an ambiguous reference

with "several". There is J template for the fragment

"soldiers fired at the women" and two for "several fall".

There is a CSIR that takes the template "one strike another"

and produces the new template "other falls". Applied to the

first template for the sentence, the CSIR yields the template

"women fall" and this matches one of the templates for the

second sentence fragment. If no shorter chain of CSIRs is

found, this match is preferred and "several" is assumed to

refer to "women".

44

There are several aspects of this work by Wilks that

are aspects of my own work as well. He claims that much of

syntax can be handled by semantics. The semantics ht? uses

is not devised for a particular topic domain but is based

on a set of general primitives. The treatment is intended

to be applicable to texts both shorter and longer than single

sentences. The mechanisms, particularly the templates,

are part of the vocabulary for hir> theory of context.

However, anyone looking at the two systems will un-

doubtedly see more differences than similarities. The

basic scheme of analysis, which tukes a chunk of text and

reprocesses it over and over, is totally counter to the

word-by-word, left-tc-right method of my analyzer. All

the active parts of his analyser are in routines which

manipulate the static structural descriptions associated

with each word. Knowledge about language analysis, such

as the passive construction, ("John was hit") or the similar

"give" construction '"John gave Kary a beating") would ap-

pear not in the definitions cf "be" and "give" but in

routines that noted the occurrence of "be" and "give" and

performed some kind of transformation. This also is counter

to the approach of my analyzer.

Despite agreement by WIIKS and myself on topics like

semantic structures versus syntactic ones, the two analy-

zers are very different in design. This is because of the

difference in task. For Wilks the task is machine transla-

tion. For myself the task is developing a model of human

comprehension of natural language. Nothing about these

two tasks demands that they be handled differently. The

analyzer of this work could be the front-end of a transla-

tion system (as in a sense it was with the MARGIE project-

see "History of the Analyzer") and one could claim that

45

Wilks' analyzer is a model, if not of human language com-

prehension in general, at least of human comprehension

when translation is being done. It is certainly the case,

though, that the two different concerns did lead to very
different results.

The point of this is to emphasize a theme that is in

the background of much of the work in this theses. The

theme is the importance of keeping a goal in mind during

development work. The differences between my work and that

of Woods, Winograd and Wilks stem from the fact that the

goals behind my analyzer, which are described in the next

section, are not the goals of the others. Differences ingoals,

even if the various goals are consistent with each other,

can leed to drastically different results. For this reason

the goals and assumptions that will be described are of

crucial importance in understanding what has been done.

And tnis point shall reappear throughout this work, either

explicitly or implicitly, when a discussion is raised not

on how something can be done out on how it should be done.

46

i m

ii
U

CHAPTER 4

ii

^J

BASIC IDEAS IN THE ANALVZER

4.1 GOALS AND ASSUMPTIONS

The form of the analyzer described is the result of

assumptions of two different types. One set of assumptions

is concerned with how the analyzer should carry out the

task of assigning meaning representations to sentences.

This set, however, is dependent upon another set of assump-

tions. These are the ones that specify the purpose of writ-

ing an analysis program at all. That is, the goals of the

program CTG detarmined in part by the goals of the theorist.

The goal of thin work as a theory is to investigate

how language might be comprehended by humans. Given cer-

tain intuitive beliefs about the process in general, what

specifically would an analyzer based on -such principles

lock like? The questions to be answered are;

1) What assumptions and decisions are made during

the comprehension of a sentence?

2) When are the assumptions and decisions made?

3) What are the reasons for these assumptions

and decisions?

The assumptions of concern in (1) are primarily those that

are about the meaning of a sentence. There are other con-

clusions that may be drawn by someone when hearing a sentence,

such as the educational status of the speaker, but these

are not directly related to the meaning the hearer finally

gives to the sentence. The answers to (2) are not ones of

time but of position. That is, if a sentence could be said

47

to take five seconds to understand, the answer being loo.ed

for is not that a decision took place two seconds after the

sentence analysis began. Rather, answers to (2) take the

form "a. soon as a decision is made about A, then a decision

is made about B, but not before." This, of course, is re-

lated to (3) bec'iuse if a decision A waits for some otner

decisic £ to b:- made then decision A probab] y has as one

of its reasons some information from decision Ja. And in

(3) as in (1), the interest is on decisions made for rea-

sons that are related to meaning. ' us the theory does

not try to deal with an effect on the analysis due to some-

thing like knowing that th'.- speaker always uses certain

words in ways which are different from most other speakers.

These assumptions about the object of study stress

the decision aspect o: language analysis. This is reflected

in the form of the data/control structure of the analyzer

program. Decisions and their reasons are set apart from

the rest of the system so that they can be seen more clearly

and be more easily expanded and modified. The basic data

about language is contained in specifications of language

situations and appropriate actions for these situations.

Once it is decided that the analyzer should be a

concrete expression of a theory of human language processing,

then the tasks of the program are defined by the assumptions

of this theory. There were four initial assumptions made

about human comprehension which were relevant to the pro-
g r a i. design:

l)
The primary goal in the analysis of a sentence

is to find an interpretatlot for that sentence,

to find ideas that are the same as or similar

to thrae which the speaker wanted to communicate

with the sentence.

4 8

2) Decisions about concepts and conceptual re-

lationships for the sentence are made whil«'

the sentence is beinr read. One does not

»ait until everything is present to start

making decisions about the meaning of the

first word of the sentence.

3) Previous choices have prepared for later

choices by making predictions about likely

situations to watch out for. The end of a

sentence is guessed at after the beginning is

understood. For example, the objects of a

verb are predicted to be in conformity with

restrictions specific to the verb and to the

context of the sentence.

4) The first things recognized in a sentence are

its words. Once the words are seen, meanings

can be assumed and predictions can be made,

üut first the words have to be seen. The

word is thus a basic element. Associated

with the words are not only the concepts that

the words refer to, but also the expectations

that predict what words and concepts might

co-occur and how these words and concepts

are related o the total meaning being com-

municated.

Assumption (1) includes a claim about what people do

with language. It says that they communicate thoughts with

sentences. Basic to Conceptual Dependency theory is this

assumption that thoughts are different than sentences, that

ideas are built from language-free concepts and language-

free relationships between those concepts. Communication

is the transformation from a thought to an utterance by one
49

person, back to something like the original thought by

another person. The transformations are between structures

of two very different types, between concepts and sound pat-

terns.

This emphasis on meaning does not mean that syntax

might not play an important part in the anal'^er. However,

the next three assumptions do greatly limit the role that

syntax plays in the system described.

Assumption (2) says that concepts are chosen while the

sentence is still being read or heard. This does not di-

rectly say that syntactic structures should not be built,

but it does reduce their importance. Syntactic structures

that apply to the sentence aa a wnole will be recognized only

at the end of the sentence, by which point, by (2), the

meaning of the sentence should be known already. Such large

F.tructuies thus are seen too late to affect the flow of

the analysis.

Assumption (2) provides, with the idea of predictions,

a mechanism for analyis. Predictions are links that tie

the words together in a sentence (and tie sentences together

in a text). An augmented transition graph, such as Woods',

U5 ;s a prediction mechanism to do syntax analysis. Coupled

with assumption (2) however, assumption (3) leads to predic-

tions concerned not with syntactic structures but with con-

ceptual ones. It turns out that this further reduces the

use of syntax. Instead of predicting a syntactic structure

which has a certain meaning the analyzer predicts the mean-

ing directly. For example, with a prepositional phrase such

as "on the door of the house on the hill" it is not nec-

essary to preserve (or predict) syntactically relationships

^'at havr to be rade clear conceptually anyway. The phrase

«ran be treated as three separate cases of prepositional gov-

ernment, "on the lioor", "of the house", and "on the hill".

50

:

The fact that the door is part of the house which is on

the hill is conceptual information, not syntactic.

Assumption (4) emphasizes two concrete elements of

language, word and meaning. Words and not Tyntactic struc-

tures are Che source of expectations in a sentence. ThiH

is because syntactic structures, insofar as thuy can be

said to exist in this cinalyzer, are themselves predictions.

They originate in words that predict the appearance of

certain words and word-classes. Therefore, if a syntactic

structure makes an expectation when it occurs,

then the words that predict that syntactic structure could

make this expectation when they predict the structure

The analyzer that arises from these four assumptions

is from the start different from others. It differs from

those that generate syntactic structural descriptions, and

it. differs from those that look for patterns in sentences.

I believe thai: all previous efforts fall into one or both

of these sets. Most programs have generated syntactic

descriptiois of sentences. Those that didn't, such as

the first attempt at a CD analyzer (Schänk and Tesler (1970)

relied on pattern matching to extract the features they

needed from tne sentences they analyzed.

51

4.2 PATTERN MATCHING

Pattern matching is a very flexible mechanism and, in

a suitably designed programming language, some algorithms

can be easily given in terms of input and output patterns

(sec Enea and Colby (1973), and Tesler, Enea and Smith (1973))

However pattern matching was not used to a great degree

in the analyzer. There were four characteristics of oat-

tern matching systems tnat made tnera inappropriate for tho

approach used:

1) Lack of communication-When a pattern match fails

there has been work done prior to this failure

and information gained that could save labor

in trying the next pattern. In a pure pattern

matching system however, each pattern would be

a fresh start and the information would be lost.

23 Ordering demands-It may be the case that the

mere presence of several features, regardless

of their order of appearance, is the crucial

factor t - look for. I., a pure pattern match-

ing syttv.-n, however, patterns are specified

as linear, hence ordered, strings of elements.

3) Inf lex ibi 11 ty-11 may be the case t.iat elements

in the input need to be classified according

to a feature that has been dynamically pro-

duced and would not be feasible as a normal

feature, e.g., "object broken by bottle dropped

by John." A pure pattern matcher however is

based upon a static classification.

4) Rewriting-Pattern is often viewed as a form

of rewriting, that is, the Input pattern is

rewritten as the output. It is unnatural, I

feel» to look at a meaning as being the re-

52

..

..

write of a word. Certainly the word is still

present after its meaning has been assigned.

The word is not converted into a concept, hut

rather, at the most, it is associated with

one.

These characteristics are only biases, not insurmount-

able limitations. However, the more mechanisms that are

introduced to remove these aspects and the more they ar«

used, the less distinction there is between a pattern inatcn-

ing system and any other programming device. Finally, it

is my belief that natural language analysis is a domain wnere

such extension mechanisms would be necessary. Hence pattern

matching is not a central aspect of the analyzer.

4. 3 AMBIGUITY

The problem of ambiguity has been a major one for

computational linguistics. Usually two types of ambiyuity

are recognized: semantic and syntactic. An example of

seoatvtic ambiguity is "The prince held a ball" where "a

bdll" might mean a round physical object or it might meai.

a type of gathering. An example of syntactic ambiguity

is "I told Mary to keep her quiet" where the interpretation

of the sentence might be that I told Mary something in or-

der to keep Mary quiet or that I told Mary that she should

keep someone else quiet. In the analyzer, however, this

second type of ambiguity is subsumed under the first type.

This is because the syntactic processes tha*- were Incorpor-

ated were those performed by programs attached to words

and concepts. Thus, m making semantic decisions. I.e.

choosing the meanings of words, the analyzer is simultan-

eously making syntactic decisions, because part of the mean-

ing of a word Is the role the word plays In the sentence.

There are a number of questions that make up the prob-

lem of ambiguity: foremost, of course, Is the question of

what the processes are that produce (which is not necessarily

a proces-; of chooslna from a set of possibilities) the most

reasonable, in human terms, interpretation of a sentence.

Related to this is the question of whether ambiguities should

be seen by an analyzer and resolved, or whether they should

not be seen by the analyser at all. If the former approach

is taken, there is another question about whether the re-

solution of the ambiguity should be done immediately or at

the end of the c 1 au-.e or sentence or paragraph.

The analyzer makes no claim to having answered the

first question. But specific types of processes that Jo

affect decisions about word meanings will be described.

54

As to the questions of when, if ever, ambiguities are seen

ai . resolved, the analyzer takes a mixed approach. The

key is the distinction between a sense of the word, as tho

terra is used in the analyzer, and what intuitively, would

be called the meaning of that word. Only one sense of a

word is normally seen by the analyzer, and if more than

one are found, one is chosen immediately. However a sense

is itself a set of programs each of which can produce a

distinct conceptual representation if the right circumstances

cccur. Thus, even though one sense is chosen for a word,

there may still be, so to speak, several meanings available.

3ut note that the circumstan ces that lead to these different

meanings are distinct. One sense does not predict two con-

tradictory actions for the same expected situation. This

is true, by fiat, for requests in general. There will not

be for a situation, S, two requests each testing for S

but cauaing contradictory actions if S is found. In the

special case, where the situation S is the occurrence of

a single word, this is saying no more than that a word

has only one sense expected at a time. The principle is

extended, then, to cover also those situations where S is

not a word.

5 5

u
i

.

CHAPTER 5

CONCEPTUAL DEPENDENCY

5.1 GENERAL ASPECTS

Conceptual Dependency as a term applies to several dif-

ferent aspects of work that has been carried on for the past

four years. The least crucial of these aspects is the nota-

tion involved, but it is that which, or necessity, the most

space must be devoted for description. For perspe"_ i. ve how-

ever, there should also be a brief mention of t- e Jther tiling:

that make up Conceptual Dependency. They are:

1) A claim--The claim is that an interlingua should

be a system of structures suitable for the repre-

sentation of language-independent concepts. Fur-

ther, the understanding of language means the as-

sociation of such structures with linguistic one-.

2) A methodology--The methodolcgy (by no means well-

defined) makes heavy use of introspection about

what simple natural language utterances mean. Then

there is a search for primitive elements and rela-

tionships, and ways of combining the two, that

capture both what a single phrase means, and also

what similarities and differences in meaning the

phrase has when compared with other phrases. The

paper by Schänk et al. (1072) is a good example

of the results of this 4cind of approach.

3) A system of primitives--In CD it is assumed that

the interlingual structures are built with elements

from a well-defined set of building blocks, elements

56

which are themselves not reducible to other struct-

ures. This is opposed to a system where all ele-

ments are defined in terms of other elements, such

as Quillian (1968). These primitives arc of two

types--relationships and entities.

4) A notational system—The description of this fol-

lows. It does not describe all of CD but rather

just enough to explain the structures that arc

used in this work. Alternative descriptions i-x-

ist in Schänk (1972), Goldman (1974), and Rieger

(1974), but the reade? is warned that he will «n-

cuunter minor notational variants between those

descriptions and this one.

The Two Formats

There are two foi...jats in which CD structures will be

written. One is the two-dimensional graph format that, is

the standard form used in the papers that have appeared nn

CD. The other is a one-dimenöional list structure format

.hat i3 used by various programs for the input and output

of CD structures. These two formats will be given simul-

taneously. However, as a guide to the reader in parsing

the one-iimensional Lisp form, the following BNF descrip-

tion can be given:

CONCEPTUALIZATION) := (^FORM) ^MODIFIERS))

<F0RM>:= ((.MODIFIERS)) | LISP-ATOM

(MODIFIERS) : = empty [(MODIFIERS) LISP-ATOM <pONCEPTU-
ALIZATJON^

The basic element is the ^CONCEPTUALIZATION). It has

two parts, a <FORM^ and a string of (MODIFIERS^. The (.FORM)

Is either an atom or else a list of the same form as ^MODI-

FIERS'). Thtf latter form consists of an even number of ele-

ments. Die first, third, fifth, etc. elements are atoirs and

'.7

I I
»-

« •

• .-

specify various one argument roles. The second, fourth,

sixth, etc. elements are «^CONCEPTUALIZAT ION>s and specify

the fillers of the roles that precede them. The role ;

that can appear in a ^FORlO are distinct from those that

can appear in a <M0DIF1ERS> (unless, of course, the <FORM>

is in a <CONCEPTUALIZATION> in a <MODIFIERS>).

A syntax in BNF cannot be written of the CD graph struct

ures because of Its two-dimensional format. Basically two

kinds of links are used to express the relationships that

are handled by the roles in the list format. They are:

1) Arrows--An arrow has at least one head and at least

one tail, and the elements in a graph next to the

head(s) and tail(s) of an arrow etc arguments of

2,

the rolatJohship associated with that arrow,
I R

« ' «■

The

^C
anc 4—~\ arrows. When their left-hand heads all

point to the same object, those arrows are written

along a straight line for readability, and their

left-hand heads point "through" the other elements.

For examnle in;

rtTRANS< BOO

^

•>JOHN

;MARY

both links have ATRANS as the argument of their left-

hand arrow head.

Parentheses--A few relationships are specified by

writing the two arguments adjacent to each other,

with the second one in parentheses, e.g. HAND (JOHfJ)

i

I 58

5 . 2 C:' KLEMENTS

A ^..".-^Pt-ualization is the most complex CD structure

possible. it is built using element!

i) Primitives

2)

s of three types:

Re 1 at ionships

i) Conceptualizations

A rf1 atiohship Jinks one or more primitives or conceptu

alizations, called the dependents, with one primitive or con

jeptualizatiorii called the no vor nor, (There are several re-

lationships that are several links combined and those have

v ro than j.ne governor.) Every relationship is fixed In

t... number vi dependents it iias (with the exception of a

Link used with the action MBU1L0, which will not be describe

here), and i;^ fixed also in which of its arguments must be

conceptualizations and which must be primitives. (There

•■wc relationships,

their arguments.)

and — , which allow either for

S£ecia 1 P r i mi 11vea and Relat ionships

Th>' set of primitives is not a closed set (see "Con-

Jt.pt.ia] '.j-nar.t ics") , but there are several important closed

subnets, O.ie of these is the set of bisic ACTS, or actions.

There are about a dozen of these, and the ones which ^hall b'

needed here are: ATRANS, PTRANS, MTRANS, PROPEL, GRASP,

MOVE and l.jGEST. Their usages will be described shortly.

Another subset is important for conceptualizations deal*

in'j with mental activity. This ts a subset of the PPs, or

tninya. They describe body parts capable of containing in-

formation, i.e. conceptualizations. These parts are:

1j Brain

i) CP-for Conscious Processor — This is »the

part of the brain that carries on conscious

5 9

I

I

I

J

I

thought»

ii) IM-tor Immediate Memory-- rh i ^ i f. tho i'.iit

of the brain that carries on subconscious

thought}

I ii) LTM-for Long Term Memory--This is the part

of the brain wherr knowledge is stored»

2) Sense Organs

i) EYES

ii) EAKS

More parts and details about their functions appear in

Schänk et al. (1972).

The atom MLOC (for mental location) followed by one of

these parts in prrenthases is used in state descriptions for

predicating t-hat information is present in that part. The

person to whom this part belongs is specified by placing him

in parentheses following the part. Thus the graphic otruct-

ure MLOC (LTM (JOHN)) refers to the mental location of John's

Long Tern; Memory. The linear form of this is (MLOC VAL

(LTM PART (JOHN))).

Three other, non-mental, body parts that shall be used

are: HAND, MOUTH, NECK and INSIDE. The last refers variously

to the lung^, the stomach, oz the blood stream, depending

on whether something was put INSIDE someone by breathing,

eating or injecting, respectively.

It is important to not^, particularly with respect to

the brain, that these body parts (and the emotional states

described next) are not meant to be correct descriptions of

the way people are built. They are instead intended to re-

flect a naive everyday picture of how people are built, a

view as it is reflected in the common vocabulary.

The emotional scales are another subset of the set of

primitives. A particular emotional state is given by a point

on an emotional scale. The only scales used here are JOY and

GO

ANGER. The scale for the former runs from -10 to 10. The

scale for the latter runs from 0 to -10. A mild feeling of

JOY is about 2 on the scale and is written graphically as

JOY (+2). A mild feeling of ANGER is written graphically

as ANGER (-2). The linear forms for these constructions are

(JOY VAL (+2)) and (ANGER VAL (-2)) respectively.

Another scale is HEALTH which describes the general

healthiness (or lack of it) of a person. The scale runs

from -10 (by convention this is usad for death) to +10.

61

5. 3 CD STRUCTURES

We now describe the structure of conceptualizations.

Conceptualizations play a central role in the representation

of thoughts. A conceptualization is used to represent a

belief about either a sta*-e -r an event. An event is either

a ciange in state, an action done by an actor, a conjunction

of one or more events or the causing of one event by another.

In the examples of conceptualizations given below, the

graphic forms precede the linear ones.

States

A state is a predication about a static condition of

something. This thing ight be either a simple object or a

conceptualization. (There is no predication that can apply

to both types.) The predication involves three elements:

the thing, T, predicated about, a property, P, and a value,

V, of that property when applied to ". The CD structure used

is :

T#H^P (v') or ((ACTOR (T)<s=5$(P VAL (V))))
or ((CON (T)^=^(P VAL (V))))

ACTOR is used in the linear format if T is a FP and CON is

used if T is a conceptualization.

An example of a property is COLOR, The structure under-

lying the sentence "The book is red" is:

B00K<MW»C0LOR (RED) or ((ACTOR (BO0K)4==£ (COLOR VAL(RED))))

For "John is in New York" we write:

JOHN^at^LOC (NEW YORK) or

({ACTOR (JOHN)^=^(LOC VAL (NEW_yORK))))

For "Bill has the knowledge (or knows) that John is in

Mow York" we write:

JOHN
J£,4==si>MLOC (LTM (BILL))

LOC (NEW YORK)

62

or ((CON ((ACTOR (JOHM^SS^(LOC VAL (NEW_YORK))))
^»> (MLOC VAL (LTh i-ART (BILL)))))

"John Is furious" is written as a point on the ANGER

scale:

JOHN^a^ANGER (-8) or ((ACTOR (JOHN ^5*=^ (ANGER VAL (-8))))

Events

A) State Changes

A state change is the transition by something from one

state to another, or more specifically, from one value of a

property to another value of that property. The basic struct-

ure used for a cnange from value V to value V is:

I—<P (V) or ((ACTOR (T)^-4T (P VAL (V))
^a^F (P VAL (V1))))

Or ((CON (T)^—$>T (P VAI (V))
^=;F (P VAL (V1))))

Th'Js, to represent a change of ownership of a book from

Bill to John (but not the action of changing ownership) we

wr i te :

BOCK

<

PCSS (JOHN)

POSS (BILL)

or ((ACTOR (BOOK)^^ (POSS VAL (JOHN))
6£~>F (POSS VAL (BILL))))

For "John became angrier" we ^^ ite:
< ANGRY (X+2)

ANGRY (X)

or ((ACTOR (JOHN)^#T (ANGER)
^^F (ANGER)) INC (+ 2))

With state changes on scales it is also possible to make

use of the convention that a positive seals, like JOY, goes

to 10, while a negative scale, I'ke FEAR or ANGER, goes to

-10. Hence we ran specify a positive or negative state

change withou, 'esignating a particular Scale. Thus to repre-

sent "Mary's situation worsened" we write:

63

[
II

■

MARY>

Actions

An action

or ((ACTOR (MARY)^^T (UNSPEC)
^s)? (UNSPEC))

INC (-))

is someone doing something, usually involv-

ing seme other thing, .c.e directic of the action and some

sub-actions that tell how the

versions for these relationships ar
action was done. The graphic

e^=» ,
D I I

) and "

(or

— , respectively. The linea>- versions are

<;=), OBJECT, TO and FROH and INST, respectively.

The basic structure for an actor A doing an action P to

some o,ject 0, in a direction froi

by means of the event K is:

r*G

m a source S to a goal G,

o r A^P4_2_ o «J? -P " ^L i

or ((ACTOR (A)f=4(P) OBJECT (O) TO (G) FROM (S)
INST (E)))

A, P, G and s are always atoms, i.e. primitives. An

E is always a conceptualization. An O is always a primitive

for some actions and a conceptualization for others. (In

the linear form MOBJECT is used when 0 is a conceptualization.)

An A is always either an «nimate bring (and with some actions

A must be human) or a physical force, such as gravity or a

machine. A rock, in other words, could not be an A. The

INST is tljsj one case which nay be left unspecified. Since

every action can have instruments, which in turn can have

instruments, the decision of when not to specify the INST de-

pends on how deeply something is being considered, not on

the syntax of full conceptualizations. When other cases are

not filled in, their links are written but in the place

where the information should be a t 1 is put in the graphs

and a NIL in the lists.
f>4

I (

There are seven primitive actions that will be used

here, plus two special ones. The actions are:

1) ATRANS-takes the R (rather than D) case (R is

for recipient)--This is the transfer of owner-

ship of 0 (which must be a PP) from person S

to person G. Usually A is equal to either S

or G. For example, "John gave Mary the book'

3)

is;

JOHN^*ATRANS* BOO

or

KeC
MARY

'JOHN

((ACTOR (JOHN) ^^(ATRANS) OBJECT (BOOK) TO (MARY)
FROM (JOHN)))

2) PTRANS-takes the D (for directive) case--This

is the transfer of control of (or vicinity of) O

(which is a PP) from S to G (both of which must

be PPs). For "John passed Mary the book" we

write:

JOHN^ss^PTRANS<-2-BOOK ^_£|
MARY

JOHN

or

((rtCTOR (J0HN)4=^(PTRANS) OBJECT (BOOK) TO (MARY)
FROM (JOHN)))

We also use PTRANS for simple motion, such as

"John went to Nc-w York" which is written as:
_)NEW YORK

JOHN^=^PTBANS^-JOHN<. Dj—'*

a
or

((ACTOR (JOHN)^=^ (PTRANS) OBJECT (JOHN) FROM (NIL)
TO (NEW_YORK)))

MTRAN3-takes ehe R case--This is the transfer

of the information represented by 0 (which must

be a conceptualization) from S to G (which must

both be of the set of mental locations listed

- -
l

- i

Cb

I

1.
-

i

in "Special Primitives and Relationships").

This is a multi-purpose action, covering basically

all kinds of transfers of information. For

example, for "John told Mary that Bill was here"

we write

J0HN4=^MTRANS<

BILL

MC

CP (MARY)

P (JOHN)
LOC (HERE)

or

((ACTOR (JOHN)£^ (MTRANS)
MOEJECT ((ACTOR (3 ILL)^a^(LOC VAL (HERE))))
TO (CP PART (MARY)) FROM (CP PART (JOHN))))

We also use MTRANS for internal information

transfer. Thus we write for "John recalled

that Bill was here":
BILL r*CP (JOHN)

JOHN<=5>MTRANS*i2 %r-~

M- >-t/PM (JOHN)
LOC (HERE)

or

((ACTOR (JOHN)^—^ (MTRANS)
MOEJECT ((ACTOR (3ILL)fsaä^{ LOC VAL (HERE))))
TO (UP PART (JOHN))FROM (LTM PART (JOHN))))

And MTRANS also serves for perception, so that

"John saw Bill was here" is ripresented as:
BILL
__ _ >CP (JOHN)

JO I
0 >*> R r-*

)HN^=5>MTRANSf- "Tu

LOC (HERS)
EYES (JOHN)

or

4)

((ACTOR (JOHN ^=^(MTRANS)

MOBJECT ((ACTOR (B I LL)^s£(LOC VAL (HERE))))
TO (CP PART (JOHN)) FROM (EYES PART (JOHN));)

PROPEL-takes the D case--This is the application

of a for-^ to O (which must be a PP) in a direc-

tion towards G away from S (which must both be

PPs). To represent the meaning of "John pushed

&6

5)

6)

7)

Mary" we write:

JOhNf-=>PROPE

or

(«ACTOR (JOHN)

MARY
►CD

«.JOHN

(PROPEL) OBJECT (MARY) TO (NIL)
FROM (JOHN)))

GRASP-tdkes neither R nor D--This is the action

of taking held of 0 (which must be a PP). Thus

to represent "John grabbed the block" we write:

JOHNf GRASr^-—BLOCK

or

{(ACTOR (JOHN)<=s^(GRASP) OBJECT (BLOCK)))

INGFST-takes the R case--This is the action of

ingesting 0 (which must be a P?). The normal

use of this» act is to represent "eating" and

"drinking", using INSIDE and MOUTH. Thus to

represent "John ate a banana" we write:

r-»INSIDE (JOHN)

«—(MOUTH (JOHN)

JOHN< ^INGEST BANANA

or

f (ACTOR (JOHN)^-^(INGEST)
OBJECT (BANANA) TO (INSIDE PART (JOHN))
FROM (MOUTH PART (JOHN))))

MOVE-takes the D case--This is the action of

someone moving the body part 0 (which must be-

long to the set of body parts, naturally). This

is commonly used for specifying the INST of

physical actions. For example to represent

"John hit Mary with his hand" we write:

JOHN. ► P ROPE L^l-MAR Yt-^-
f—tC3 , JOHN

(JOHN MOVE

HAND (JOHN)

JOflN

1
MARY

07

or

r
I.

r

((ACIOR (JOHN)<F=^(PROPEL) OBJECT (MARY)
TO (NIL) FROM (JOHtJ)
INST ((ACTOR (JOHN)^=> (MOVE; OBJECT (HAND PART (JOHNP

TO (MARY) FROM (JOHN)))))

8) DO--This is for representing cases where it is

known that someone performed an action, but the

action is left unspecified. Thus to represent

"John did something to this book" we write:

JOHN«=>DO<r^- BOOK

or

((ACTOR (J0HN)<^=^(DO) OBJECT (BOOK)))

9) MFEEL--This is an ad hoc notational device con-

venient for an example that appears in the sec-

tion "Multi-Sentencr Analysis". It is the "action"

of feeling some emotion O (which must belong to

the list of emotions) towards person G. It

is used here to represent "John hated Mary" as:
.-^MARY

JOHNt—i>MFEE ANGE
"-^ OHN

or

((ACTOR (JOHN)<=>(MFEEL) OBJECT (ANGER) TO (MARY]
FROM (JOHN)))

C) Conjunction of Events

The description of two events as one event is necessary

sometimes. This happens when two events together specify one

instrumental event, or when the two events together specify

one of the events In a causal relationship, or when the two

events are specified by one utterance. The general form for

representing the conjunction of events E and E (both con-

ceptualizations) is:

E A E2 oi. ((CON (E^ A (E)))

Thus to represent "John and Mary are here" we write:

63

JOHN* ^LOC (HERE) A MARY,

or
'LOC (HERE)

D)

((CON ({ACTOR (JOHN)^s^(LOC VAL (HERE))))

A ({ACTOR (MARY H*-g^(LOC VAL (HERE)))))
Causat ion

Causation is a relationship between two events that

says that one event, the antecedent, is in some way respons-

ible for another event, the affect. What kinds of causation

there are is a matter of current study. In this work three

types of causality are referred to. They are:

1) Simple causation--The occurrence of event E led

to the occurrence of event E . The general

form for this is.

E

t
E

,1
or { (CON (E)d (E2)))

The representation of "John killed Mary", is

JOHN$=^ DO

^ , > HEALTH (-10)
MARY

HEALTH (□)

or

((CON {(ACTOR (J0HN)4=^(D0)))
^S ((ACTOR (MARY)^A>T (HEALTH (-10))

^F iHEALTH (NIL))))))
21 Conditional Causation--The occurrence of E usu-

ally leads to the occurrence of E . The general
form is:

E

t or ((CON (E). rC (E2)))

To represent "Being hit hurts" we write
o ON El

ONE 2

PROPELS ONE

HEALTH (X-2) Tic .—»I

—o

(D I—>

HEALTH (X)

69

or

■
i-

3)

((CON ((ACTOR (ONE1)4=»>(PROPEL) OBJECT (ONE2)TO (NIL)
FROM (NIL)))

ABC ((ACTOR (ONE2)^^T (HEALTH)^HS^F (HEALTH))
^ ' ' INC (-2)) >)

where ONEl and ONE2 are dummies representing un-

known people.

Enabling causation--The occurrence of E allows

the occurrence of E.

or ((CON (E^,

The general form is;

E (E2)))

Modifiers

To represent "John allowed Mary to go" we write:

JOHN^=^DO
"- E

MARY$=^PTRANS{ MARY^.
L-<JOHN

or

((CON ((ACTOR {JOHN)<M^(DO)))
4mE ((ACTOR (MARY)^=^(PTRANS) OBJECT (MARY) TG (NIL1

FROM (JOHN)))))

The graphs given so far have been omitting certain modi-

fying relationships that are normally included. There is one

general modifying link fcr both primitives and conceptuali-

zations, several links specific to conceptualizations, and

one pseudo-link for primitives only.

A) General Modifying Link

The general modifying link is the relative

relationship. A primitive or conceptualization

0 is modified by a conceptualization C in which

0 must appear. The general form is:

O

t
C

or (O^—^(O)

For example, to represent "The red book is here"

70

we write:

B00K4=£L0C (HERE)
t

B00K^>C0LOR (RED)

or

((ACTOR (BOOK^—^((ACTOR (BOOK^B^(COLOR VAL (RED)))))
{M£(LOC VAL (HERE))))

To represent "John's book is here" we write:

B00K~=rL0C (HERE)

BOOK^^POSS (JOHN)

or

((ACTOR DOOK< FACTOR (BOOK)£s^(POSS VAL (JOHN)))))
(LO-: VAL (HERE))))

B) Conceptualization Modifiers

The two main conceptualization modifiers

are called TIME and MODE in the linear format.

TIME is the time at which the conceptualization

was true. The MODE is used to «specify either

that the conceptualization is only a potential

one, or that this conceptualization did not

occur at all. In the graphs the time modifier

is written only if it is not obvious, or if it

is referred to by something else. The MODE is

given only if the conceptualization is not posi-

tive and actual. In the lists, TIME and MODE

are always specified.

However, the graphic specifications of

TIME and MODE are subr.tantia 11 y simpler than

those of the list format. Therefore they shall

be described fir^t and then the list format

system will be given separately,

i) Graphic Format for Times and Modes

The time of a conceptualization is

written above the main link of that conceptu-

71

..

j
• •

n
I • -

..

f

1 .

1
a i

alization. A simple specification is to

say that some action occurred in tho past.

Hbr example, to represent "John pushed

Mary" we write:

past o
JOHN^-^PROPEL^ MARV

Sometimes we want to compare the times

of two events. To do this we use a special

comparative construction (a coherent system

for representing comparatives in CD struct-

ures has not yet been developed), and place

names where the time modifications should

be. To represent "John was here before

Mary" we write:

JOHN^B^LOC (HERE)
A

MARY^^LOC (HERE)

The mode specifications are also placed

above (or below, depending on how crowded

the graph is) the main link. To represent

that an action is possible we use a "c".

Thus to represent "Mary can leave" we write:

MARY<-4PTRANS^2- MARY ^C HERE

To represent an impossible action we use a

"«i". Thus to represent "Mary cannot leave"

we write:

MARY^i^PTRANS^-MARYV^J >C C3

ERE

To represent negation we use a "/" through

the link. Thus to represent "Mary didn't

72

leave" we write:

11

MARY <-^PTRANS^-MARY<ü

' < HERE

Linear Format for Times and Modes

The representation for times and modes

is done by using the roles TIMS and MODE.

In the BNF syntax that was given, if the con-

ceptualization is in (CONCEPTUALIZATION)

form, then these two roles appear in the

(MODIFIERS) string.

MODE is followed by a filler which is

a list of mode speci f icatinr. ^. This filler

is the only exception to the BNF syntax

since it is just a simple list. The possible

entries on this list are CAN or CANNOT, ?»

and/or NEC (for negation). Thus the three

sentences, "Mary can leave", "Mary cannot

leave", and ''Mary didn't leave" are repre-

sented by the form:

((ACTOR fMARY)^s5^(PTRANS) OBJECT (MARY) TO (NIL)

FROM (HERE)) MODE X)

where X is (CAN), (CANNOT), and (NEC) respec-

tively.

Times are a bit more complicated than

what has been described. In the list struct"

representing CD graphs, the TIME at("res _„„„ = .. „^-^--. --- .oin

(link) is followed by (TIMnn) where n^ is a

number from 00 to 99. This atom TIMnn has

a Lisp value which Is a list of temporal re-

lationships that this time has to other

points in time. These relationships are:

1) (VAL X) -TIMnn is the same time as X,

2) (BEFORE X y)-TIMnn is before til

73

me X by

I

111

.1 mount y.

}) (AFTTP X y) -TIMnn Is after time X by

amount y.

No thought has taen spent on syptematizing

corcrete specificatiuns of time, such as

"Wednesday morning 3:0D A.M.", "an hour

f "om new",, and "four score and seven years

ago". The only values X takes on, at the

moment, m the analyzer, are T, for "now",

i.e. the time of the utterance, and other

time atom:; of the form TIMr.n. Thi only value

y takes on la "X" which mear. i positive but

unspecified amount. Thus, as an example,

T1M02 might have the value:

((AFTER TIM00 X) (BEFORE TIM01 X))

where TIME01={(AFTER TTM00))

and TIM00=((VAL T))

Note that the amount X is not assumed to he

the same between any of its occur-ences.

TIM02, by the above, is some time between

now, T, and a future time, TIM01.

P^eudo-■'odi f i or and Special Cases

The analyzer makes use of a pseudo-

nodi ft er to pasr, information to the memory.

This modifier is called REF and appears

only in the list format. The general form

is :

(P PEP' (D))

where P is a primitive and D is either A

or THE. The analyzer does not choose tokens

co be the referents of various primitives.

That is, it Tays the sentence is about a

book, but it doesn't say which particular

7 4

book. Part of the information that mem-

ory needs in choosing a token is whether

the item is supposed to be a i.ew one or a

previously mentioned one. "A" indicates

the first case and "THE" indicates the sec-

ond. The representation of "John has a

book" is this:

((ACTOR (BOOK REF (A))^=>(POSS (JOHN)}))

while for "John has the book" it is:

((ACTOR (BOOK REF (THE))<){POSS (JOHN))))

Besides REF, there are several special

modifiers that appear in this work that are

not part of a oeneral scheme. They are

placed under the role MANNER, which appears

in the same places that modes and times

do.

The two values of MANNER which are

needed are FAST and REPEATEDLY. The former

applies to actions of physical motion, such

as PTRANS, PROPEL, and MOVE. To represent

"John ran" we write (ignoring the instrument-

al) :

JOHNt^PTRANS^-JOHN
*MANNEH
FAST

i—>d

or

((ACTOR (JOHN)(=^ (PTRANS) OBJECT (JOHN)
TO (NIL) FROM (NIL)) MANNER (FAST))

REPEATEDLY applies to actions and

means that the action occurred repeatedly.

Thus to represent "John boat Mary" we write

(ignoring the instrumental):

JOHN^=^PROPEL< MARY<-
^MANNER

REPEATEDLY

D | >CI3

l—(JOHN

7 0

or

((ACTOR tJOHN)^=^(PROPEL) OBJECT (MARY; TO
FROM (N'L)) MANNER (REPEATEDLY))

Special Aspects of the Line ar Pormat

The linear format has two aspects abouc it

which ai not shared with the graphic format.

First, cnere is the concept of linear patn throuvjn

a conceptualization. Second, tht-re is the capabili-

ty of havina several different placer .1 a concep-

tualisation point .0 just one sub structure.

3) Paths in the List Format

Several of the functions in the analy-

zer use the notion of a path through a con-

ceptual structure. A path is simply a list

of Lisp-atoms, each of which is the name of

a CD link. The path through a particular

conceptualization is followed by the algorithn

1? If the path list is empty, then the cur-

rent conceptualization is the answer,

else take the first element of." the path

1 ' s t.

2) This element should appear eitTer in the

list of aton^ in the MODIFIERS of this

conceptualization, or in the list of arorv:

in the FORM. The semarzics of the struct-

ures are such ti. it cannot appear in

both. If it is in neither, then an er-

ror has occurred, and tha p^th-following

i ; aborted,

3) Resc'i the current conceptualization to

be the conceptualization immediately fol-

lowing the arpearance of the first patn

eiemoni Chat was fo'ind in step 2.

7f,

4) Go to step 1.

Thus, in the structure:
((CON ((ACTOR (JOHN)^—^(DO)) TIME (TIM01))

^=s ((ACTOR MARYX«»^ (PTRANS) OBJECT (MARY))
TIME (TIM02))))

the path (CON A.:TOR) wouli lead to (JOHN)

while the path (^=. ^=# J would lead to

(PTRANS).

1.1) Identities in tag Graphs

Another feature of thf? notation, and

one which canno be seen from normal printed

output, is the sharing of common nodes within

the structures. It is possible, for ex-

ample, thati in:

((CON (; ACTOR (JOHN)^III j>(DO)) TIME (TIM01))
^~((ACTOR (MARY)4=^(PTRANS) OBJ£CT (MARY))

TIMS (TrM02)]))

the two occurrences of (MARY) will actually

involve two references to one occurre...j of

(MARY), That is, the path (^B ACTOR), and

the path (^s OBJECT) will lead to exactly

the same point. If, then, the analyzer fol-

1- s the first path, (^== ACTOR) , and there

it changes (MARY) to (RITA), the final list

structure as printed will be:

((CON ((ACTOR (JOHN)^=^(00)) TIME (TIM01))
^gS ((ACTOR (HITA)^=^(PTRANS) OJJECT (RITA)|

TIME (T 1.10 2))))

A function, FIXUP, creates these shared nodes

by interpreting Lisp lists in the CD for mit

with thu e- ra pseudo-forms (*x Y Z,t.)and/or

'= X ¥ /,...). The (X Y 7. ...) is treated as a

p-ath, and a poinc.jr to the end of that path

is placed hy F1XUP at the point where the

pseudo-form would have appeared. j means

77

the path is followed in the structure in

a variable called CONCEPT, described later.

= means the path is followed in the struct-

ure which FIXUP has built so far. The

forms UX) , where X is SUBJ, OBJ, or REC1P,

are the s^me as the pointers returned by

(CHOICE X), a function described in the sub-

section "Conceptual Dependency Graph Manipu-

lators." Thus, with | and = it is possible

to build structures where a single pointer

to a substructure appears several times.

This brief survey concludes the description of Conceptual

Dependency structures. Readers interested in more details

about such structures, or in the reasons why these struct-

ures have been developed, should read the various papers

suggested at the beginning of thir chapter.

CHAPTER 6

•i. SENTENTIAL ANALYSIS MECHANISMS

6.1 OVE'V EW OF EXPECTATIONS AND ACTIONS

t* Tht? analyzer has two part-:

1) A dictionary of words and the expectations as-

sociated with them.

2) A monitoring program that keeps track of which

expectations have been made and performs the

actions associated with an expectation ^hen

the condition of the expectation is fulfilled.

Trie dictionary is not the only source of expectations.

dxpectat ions can come from A number of sources during analy-

sis, such as:

A. 1) the words in a .Tentenco}

the concepts referred to by words in the sentenco;

the conceptual structure built during the ar-

a 1 ysi s of the s«■■ nten„■ e ;

4) the clusters of «xpectations organized about

topics, which are concerned with:

a) the content of the sentences understood,

e.g. hunting, contests, or

b) the environment of the comprehension event,

^.g. a joke, a lecture}

Ar. expecta ion from dny of these sources can te about:

B. 1) particular words and their meanings that might

he S'l'-n next ;

2) particular concepts that might be referred to

n e x t j

2)

3)

7<J

3) particular conceptual structures that might

might be referred to next;

Associated with an expectation is a set of actions

that are performed if the expectation is fulfilled. In

general these actions can be any Kind of behavior availahlo

to the entity doing the comprehenü Iny, but the only ac-

tions relevant hero are those that further the process of

comprehension.

Such action s ate:

C. I) build conceptual structures from the concepts

referred to by the words;

2) build s/ntactlc descriptions of the surface

structure of the sentence;

3) add ur delete expectations to the set currently

active, or modify those already present}

•i) modify the actir .s associated with the current

expectations;

The analysis of single sentence? nvolves those expec-

tations referred to by words (A.l and A.2). These expecta-

tions can be about any of the items listed under (B), i.e.

words, concepts, or conceptual structures, and trie actions

about anything under (C). It is this work that shall be

described i r. the most detail. The analysis of sentences

in context involves (A. 3) and (A. 4) and shall be described

briefly in section 8.1, "Multi-Sentence Analysis", and in

detalJ in Part II.

The Conceptual Dependency system of representation Is

the means .oy which communication is possible between various

parts jf the analysis. The features of the CD system rele-

vant for discussing the analyzer jro:

i; The primitive units and relations ate language

i ndependent.

80

.:) These elements are intended to represent con-

ceptual information rather than semantic. By

this is meant that the structures are created

and manipulated not only in language proces-

sing > ut in other deductive mental processing,

i) Central to the system is the actor-action en-

tity. Conceptual Dependency is organized

around the concept of people doing things.

This is in opposition to the usual predicate

calculus state-based systems that have been

proposed as conceptual bases.

HI

i

ANALYZING WITH EXPECTATION?

What follows now i F. a description of a language analy-

sis program based on the use of these language expectations

thöt are associated with the words of the language. When a

term like feature or expectation is used, it will refer to

some specific piece of tile analyzer that has the function

of a feature or expectation a.^ described below. We will

first describe a number of the routines that have been

created to implement the theory described above. Then

how they are used in the analysis of sentences will be

descr ibed.

All the examples are done by the analyzer in the man-

ner described. The vocabulary is limited but, as will be

seen, thare are non-trivial tasks being performed by the

definitions that are oresent.

G. i FEATUKES AND EXPECTATIONS

Words have associated with them both features and ex-

pectations. The features of a word ar^ facts associated

either with that word itself or with the concept referred

to by that word. That "John" is a proper name is a fact

about the word "John". That "John" is a male human is a

tact about the concept referred to by the word "Johrv".

Features are represented in the system in the CD notation.

They are not special flags or marks built specifically for

tha analyzer, and though they are used primarily by the an-

alyzer, they are still pieces of the program's world know-

ledge and are represented like other pieces of world know-

ledge.

While the features are described with primitives and

relationships that ate generally used in representing in-

formation, tue expectation^ are described with functions

that are oriented more towards language processing. The

functions that specify conditions and actions are ones

that have been found useful for analysis. As our know-

ledge of memory processes increases, some will remain as

they are and others will be generalized to do more than

language processing. The functions that have been developed

fall into several groups.

81

b.4 FUNCTIONS IN THE ANALY2ER

Conceptual Dependency GraphManlpulators

These functions create and change internal counterparts

of Conceptual Dependency representations. Graph locations,

which can be fully specified by strings of conceptual role

markers such as "the actor of the caused event", are holders

ef irformation. That is, the graph is both the final analy-

sis result and also an object of many of the expectations

that are made while analysis is going on.

A retrieval function, called CHOICE, takes a path as

described before, e.y. "(^ ACTOR)", and returns the con-

ceptual piece found at the end of that path. A storage func-

tion, called CHOOSE, follows such a path and puts in a con-

jeptual piece. Both of these functions work with a con-

ceptualization. There exist two related conceptualization

builders, REPLACE and IMBED. REPLACE replaces the current

conceptual graph (which may be empty) with a new one, that

might, but need not, include all or part of the old. This

is called, for example, when the verb found in an utterance

provides a conceptual network tying together the other ele-

ments in the sentence, or when some word, like "again", tells

the analyzer that the conceptual network from the verb is

a subpart of some other network.

IN.BED doesn't change the conceptual graph itself but

affects how the above functions behave. Basically when

IMBED is called with a path, it resets the conceptualization

referenced by CHOICE, CHOOSE, and REPLACE to the conceptual

piece indicated by that path. Suppose the analyzer had so

far built a network involving the communication of a causal

conceptualization, e.g. "advise", which is the communication

of the belief that if the person being told dees somethirg

84

i
I
i *

he will be happier for it. Mow IMBED would lie cdlled with

the argument "(MOBJECT CON)" to reset the conceptualiza-

tion to be the action, in tht communicated idea, which woul i

cause pleasure. Any further work done by CHOOSE. CHOICE, and

REPLACE would be in building up this "advised" action.

There is of course a function complementary to IMBED called

RESET ALL whicn resets the conceptualization to be the one

before IMBED was called. At the moment the^e can not be an

unlimited stacking of these embeddings and there is a dis-

inclination to allow such. Stacking is a mechanism that

can be programmed in a straight forwerd way, and it has been

the Lasi3 of many programs for operating on data bases.

However, its intuitiveness is questionable. Some kind of

mechanism for setting certain processes temporarily aside, how-

ever, is certainly needed.

In the analyzer recursion is not a basic mechanism.

If the analyzer IMBEDs more than ince it will bo able to

reset only to the most recent embedding or else to th°

outermost level of the conceptualization. Such an approach

is related to the representation we have chosen. Had our

system been based on graphs of a more mathematical nature,

with a few primitives and a great number of tree structures

to represent everything, then embedding would be occurring

constantly and the natural way to work with these trees

would be with recursive routines. However Conceptual De-

pendency is oriented about structures where close1./ related

elements of a conceptualization appear together at the same

level, where a processor doesn't have to keep looking up

and down a tree for information. The focus of manipula-

tion changes much If.-ss often in such a representational

system. Sometimori, when the analysis leads to a shift in

levels, it moann that work on the previous level is fin-

85

ished for good. And, in thö ca.st-s wheto the icvil .•.s.ti).

is only temporary, using only one temporary holding area

has been sufficient so far.

As we shall see, often the verb will explicitly pro-

vide REPLACE and CHOOSE with the conceptual pieces that it

needs. However there are also times when there a»e signifi-

cant conceptual structures coming from oth-'ir words in the

sentence. For example, in "John gave Mary a headache," "a

headache" is the name of a conceptual structure for feeling

pain in the head, and the analyzer, in doi.ig this sentence,

needs to take this structure and say "John caused Mary to

feel pain in her head," Hence there also exists a routine,

called UTiLIZE, that takes the structures referred to by

words and prepares them for incorporation by REPLACE. Both

REPLACE and UTILIZE call the function FIXUP and so they

are capable of returning s-oxpressions with shared nodes.

Finally, there are several functions for manipulating

times in the graphs. Two functions, BEFORE and AFTER, each

take three arguments. The first two are specifications of

points in time and th; third is the amount by which the first

is before or after the second. This relational information

is added to the list ol relationships that makes up the

value of the first argument. The time atom that was the

first argument is then returned as the value of the BEFORE

or AFTER. Thus, saying (BEFORE TIM02 T1M01 X) would add

the relation (BEFORE TIM01 X) to the value of TIM02 anr1 re-

turn TIM02 as the value of the function call. Frequently the

first argument is supposed to be a new time atom. For this

a function called NEW_TIME, wheh is like the Lisp GENSYM,

is used which returns a new atom of the form TIMnn whenever

it is invoked. Thus when the form (AFTER (NEW_TIME) TIM02 X)

is evaluated, a new time atom, say T1M03, will be created, with

a value, (AFTER T1M02 X), and TIM03 will be the value of the

AFTER function call. 0,
86

Syntactic Structure Manipulators

Another set of functions is needed to operate on th«

syntactic structure of a sentence. The description of thesr

functions will be somewhat brief. They have not been the

main focus of our effort. This is because much work has

already been done on syntactic analysis. Most other ap-

proaches, computational and linguistic and even psychologi-

cal, have been concerned with wha*- could be obtained using

just syntax, until It became necessary to add semantics.

The approach here is the exact opposite, to see what can

be done from the conceptual side and only include syntac-

tic aspects when they seem needed. The first form of the

analyzer didn't even have word order.

The syntactics used by the analyzer are quite simple.

This is partly because less time has been spent on them

and partly because the existence of a conceptual network

means the syntax doesn't have to carry the semantic load

that it does in a syntactically based system.

There are three surf ce cases used, SUEJ, OBJ, and

RECIP, which save places for items until tney can be given

conceptual roles to play. These roles are primarily deter-

mined by word order, with a secondary distinction between

humans and objects, so that RECIP is generally a human, if

it occurs at all. (The cases are of course specific to

English.) The information in these cases is saved bv IMBED

when it is called and later reset by RESET_ALL, with the

same comments about stai'tng applying. Further, CHOICE and

CHOOSE both Know how to I. ndie these cases, and the analyzer

can add and extract information from them just as it does

with the conceptual structure it is building.

These word order casos shculd be supplemented by the

use of prepositional markers. " h■s has rot yet been imple-

G7

mented in the program beyond one experiment. All that would

be done is to save under the name of the preposition the

sense of the phrase that it governs, just as the sense of

the first noun phrase is saved under the name SUBJ. Nothing

conceptual is being done at this point. For the conceptual

content of the preposition, the analyzer must decide what

relationship a preposition is expressing from what has al-

ready been understood and from the nature of the object of

the preposition. The v«rb, which plays a ceri*--al role in

this system, usually does most of the wo k in giving an

expected meaning to the use of a preposition. Still, the

analyzer needs to save the fact that such and such item

v/as governed by such and such preposition, particularly to

handle prepositions introducing a sentence ("By the car

was a...") and to provide backup routines with this in-

formation.

There is another place where simple syntactic action

occurs: while building noun phrases. Starting with the

recognition of an article or adjective, words as they are

brought in are not converted into a unified conceptualiza-

tion until something is seen that inaicates the noun phrase

is ended. The end of the sentence, a verb, or *.he start

of a new noun phrase are some of these signals. Knowing

what the main item is that is being modif .ed by the pre-

vious string of adjectives and nouns the analyzer can make

a conceptual whole. But many adjectives used commonly,

like "short" or "sweet", cannot be said to have meaning

until they have something to modify. Granted there may be

something in common between "a short stick" and " a short

pause", between "a sweet candy" and "a sweet voice", but

the common elements involved are too vague to sufficiently

determine a particular use of these adjectives. That is,

88

mm

I.

l.

ii
Li

* *

u

given some such unifying theme, we stiil couldn't predict

reliably what modification the adjective meant with many

nouns. Admittedly there are times when wo do use rules to

generalize word usages, when metaphors are involved, but

for the moment we are concerned with the common, ingrained

uses of words. Adjectives are fairly ambiguous words, and

the major source of infornatioii on what to do with them come;-

last. There is also the complicating factor of noun pairs,

such as "kitchen table" and 'police state". There exists

a program by Sylvia Weber Russell (1972) that handles a

number of these, and eventually it may be tied in with the

analyzer.

There are two functions for handling noun phrases.

One called SAVE takes new words and collects them into a

simple list, waiting for the end of the phrase. EVAL_PHRASE,

the other, is called when the phrase end is rioted and con-

verts this list into a normal conceptual structure. This

new structure is then returned as the meaning of the noun

phrase and behaves as a unit for such functions as CHOOSE

and FEATURE, which is described next.

39

*

Memory Interface Fucntions

FEATURE brings us to a probably open-endod set of

functions, which interrogate the memory's world knowledge

for information about things. These things may be either

words or concept.';. FRATÜP.E is the only memory interrogation

function currently used by the analyzer. It takes as one

argument either a word or a simple CDnceptual pie.e, i.e.

consisting of a PP plus modifying conceptualizations, and

as the other argument some property value, such as "HUMAN"

or "PROPER" (for proper nouns). These property values be-

long to contrast sets of uistinctivo features, such as "(hu-

man, animal, physical object)". These contrast sets are

needed because there are often times when thn analysis de-

pends on which element of the set a particular word or con-

cent i ^ a'Ssociated It is important to note that these

contrast sets are anti-hierarchical, at least to some ex-

tent. Although being a human implies being an animal which

implies being a physical object, the way in which a word

is handled in language differs depending on whether it re-

fers to no more than an ocjcct or no more than an animal.

FEATURE is a very simple information retrieval function.

It takes a particular complex of features which has been

chosen iTor some rea;.on--usually bee aiEe a word referencing

the complex wrs seep--and FEATURE is used to find out what

appears in this complex. Thus, if "John" is chosen as re-

ferring to "J0HN1" which is "ti»e man called Johr" sense of

"John", FEATURE then can be used to find that "JOHNl" is a

nan, and chat an English name is involved.

Although the function FEATURE is called with a simple

pair of arguments, like "J0HN1" and "HUMAN", what it actu

ally looks for is a full conceptualization of the form:

((ACTOR (JOHNl)^a^(CLASS VAL (HUMAN))))

90

•

I

I
-

t

Attached to JOHN1 is a list of features and they have the

form:

(KEYWORDS FEA^URECON)

wher^ KEYWORDS is simply a list of elements that appear

in FEATURECON, e.g. JOHN1, CLASS, HUMAN. To save time

FEATURE checks this list first before doing a pattern mat.ch

between the conceptualization it has and the conceptualiza-

tion that makes up FEATURECON. The form of the actual

feature conceptualization, FEATURECON, is usually:

((ACTOR (X)^^(FCLASS VAL (F))))

where F is a feature xike HUMAN and FCLASS is the contrast

set to which F belongs. The reason for this representation

of simple features was that it allowed features in general

to be any conceptualization associated with an object, not

just predications about properties of the object. For in-

stance, a feature of a "gift" cnuld be that it is an object

which one person originally obtained in order to give to

another person.

I 91

6 . 5 CONCEPTUAL SEMANTICS

It should be ment.ionod at this point that the semantics

of nouns in Conceptual Dependency is handled only super-

ficially. The stress in representational work has been on

conceptual actions and conceptual relationships, rather

than on conceptual objects, i.e. PPs. And the bulk of the

work on analysis .ind generation of English has been con-

cerned with verbs, English nouns that narae actions or re-

lationships, like "a beating" or "a walk", are recognized

as such, and they are analyzed into conceptual structures

involving full conceptualizations. However, nouns that rame

actual physical things, like "a dog" and "John", are an-

alyzed normally into non-primitive PPs like DOGl and JOHNl,

These are not words, for they do not have the same character-

istics that words have, characteristics like ambiguity and

morphological composition. The^e PPs are conceptual and

appear in conceptual structures in relationships with act.:

and other PPs, What is not well developed is how, in mem-

ory, PPs relate to each other in terms of meaning, i,e,

how does the concept of a chair rtlate to that of a table,

what does it mean to use a cup for a hammer, and so on.

What is lacking is a well-defined internal structure for

PPs, Presumably a PP is a bundle of features, but how

many featurer there are, how many it takes for an object

to qualify as a certain kind of PP, now features relate to

each other, how feair.ures which are discrete relate to the

perception of a world that is not, all these auestions are

unanswered.

Fortunately it has turned out that it is possible to

do a substantial amount of work with only a small amount

of concern for th-i nature of physical objects. Certain

92

-

u

i -

■

features, such as humanness and physicalness, havi been

enough to allow various programs, including the analyzer,

to manipulate conceptual objects, to be able to decide

what whould be d^ne with them in a given situation. And

sinct features themselves are expressed in terms of con-

ceptualizations, work on the latter can not help clarify-

ing the nature of the former.

93

6.6 THE MONITOR

There are other functions in the analyzer, but they

are subservient to the ones that have been discussed. Only

one more piece of the analyzer needs to be described before

some examples are given. This piece is the monitor, or

supervisor, the piece that takes definitions of words, which

are combinations of these functions, and executes their in-

structions. This monitor is, and is meant to be, very simple,

Its job is to do bookkeeping on the following vaiiables:

SENTENCE - This is the utterance being analyzed. It is

constant throughov.t the analysis.

WORD - This is the current word in the sentence that

is being looked at. Normally WORD is set to

each successive word in SENTENCE, going from

left to right.

PLACE - This is the rest of SENTENCE, from WORD to the

end.

SENSE - This is the current sense that is being worked

with. It is usually either the sense of WORD

or of the noun phrase of which WORD is the head.

ACTIVE - This har the value T or MIL. At the start of

a sentence ACTIVE has the value T. Whenever

ACTIVE has the value T, the requests that are

attached to the words the monitor finds a.e added

to the list that is the value of the variable

REQl'ESTS. However, when ACTIVE is set to NIL,

which is done by requests attached to words like

articles, this addition is inhibited and instead

a function SAVE is called. ^AVE collects the

words that follow, until ACTIVE is reset to T,

in preparation for the construction, by a function

called EVAL_PHRASEf of a noun phrase,
94

..

-
II

1

:

I
I

I

I

I
I

REQUESTS - This is a list of requests which is unordered

(with one exception). The monitor continually

rechecks this list to sec if changes to WORD,

SENSE, CONCEPT, or REQUESTS itself have caused

ony of the requests to become applicable. The

unordered rechecking is meant to be a simulation

of a parallel control structure where each re-

quest looks to see if it should do anything,

independent of trie other requests. The only

exception to this concerns those requests that

are activated when some phrase or clause ends.

For example, in "John wanted Mary...", tne an-

alyzer assumes that "Mary" is beginning a clause

about something involving Mary that John wants.

If instead the sentence ends here, then a re-

quest triggered by the end of the sentence makes

a default assumption that the event which John

would '.ike is for Mary to cone to him. These

requests that are called by the end of something

are always placed at the end of the request list.

This is enuivalent to considering them as in-

dependent processes that, in being called by the

absence rather than the presence of something,

wait to make sure that "more real" requests have

had their say.

ANSWER - This is the conceptual representation of the

meaning of SENTENCE that the analyzer is build-

ing. It is the variable v/hose value is returned

by the analyzer.

CONCEPT - This is a pointer to aither ANSWER or to some

subconcoptualization in ANSWER. This points to

the place where the building activity is going

9 5

on at any point in the analysis. Thus it sta _a

off the same as ANSWER but, whe.i an embedded

conceptualization is being built, it points to

that instead.

Attached to each word that appears in SENT1HCE are

ona or more senses, that is, label'; of sots of features snJ

requests. Requests are of the form "(TEST ACTION FLAG)".

TEST and ACTION are the crucial elements of a request. TEST

is a (Lisp) predicate and ACTION is a (' isp) function, both

built from Lisp functions and those functions that have

been described above. When WORD changes, the monitor first

checks RE2UESTS for instructions, vsing a "unction called

CONSIDER, adds any requests attached to WORD, then finds

the current sense for WORD (settinc SENSE equal to it),

then checks REQUESTS again, then adds the requests that

are part of SENSE to REQUESTS ana steps WORD along in SEN-

TENCE. In general, TEST predicates mz.'Ae reference only

to CONCEPT and the feature aspects of WORD and SENSE.

Checking a request means evaluating the TEST. If TEST is

not true, nothing happens and the monitor goes on to the

next request. FLAG is a bookkeeping mark. When it is NIL

it means the reques_ has not been used yet, >/hile T means

that t^e request has already been used. The only requests

whose TESTs are evaluated are those whose F.LAGs are NIL.

The requests that were described as being directly at-

tached to the WORD itself, rather than being part of the

SENSE, are fulfilling a stopgap role. They are substitutes

for the results that should be returned from a morphological

analysis of that word. Routines for doing such were not

written, however. Instead, the answers, i.e. specifications

about matters like tense, were attached directly to in-

dividual word forms. A first approximation to a IT, -phology

96

:

ß

..

1

-

I
I

routine for determining the tensed form of a verb has been

written by Ta ;1 Martin, and it replaced most of these re-

quests in the analyzer, but it v;i 11 not be described here.

REQUESTS is the source of basically all the actions

that occur. Tt is also the object of some of these actions.

There are several ways ACTIONS can change REQUESTS. One

is through the function IMBED, usei mainly when entering

a new clause. IMBED saves the current REQUESTS in another

variable and replaces REQUESTS itself with a new set, speci-

fied by the third argument of IMBED. RESET ALL restores

REQUESTS to its original value when it is called. From

what was said previously it can be seen that IMBED and

RESET_ALL work with three information sets: the conceptu-

alization being built (ANSWER and CONCEPT), the syntactic

structure being built (SUBJ, OBJ and RECIP), and the expec-

tations being made (REQUESTS). This last manipulation, the

storing away temporarily of REQUESTS, is done also by the

requests on articles and prepositions. They don't use the

full power of IMBED and RESET_ALL however. Rather, a request

on an article will save the content of REQUESTS in a vari-

able called ART_INT, and net REQUESTS to be a request look-

ing for an end to the noun phrase, at which point the old

value of REQUESTS will be returned. A request or preposi-

tion does the samo thing but saves REQUESTS on a variable

called PR£P_INT. Finally, as a way of changing REQUESTS,

there is a function for adding new requests to the list,

and this is called ADDPEQ. In addition to all this, RE-

QUESTS is Initialized by the monitor to a request which looks

for a noun phrase to be the subject. This is done whenever

a new sentence is begun.

The best way to describe how requests arc- formed from

these functio-" and how requests interact is by examples.

This is the content of the next chapter.

CHAPTER 7

EXAMPLES

The first example is a very simple one, to demonstrate

some of the basic elements of the analyzer in action. The

sentence is "John gave Mary a book."

There are two sets of information associated with the

words in a sentence, the requests and the features. The

requests are of two types: those attached directly to

word forms (the pseudo-morphological requests), and those

attached to the senses of words.

Of the first type of request, there is one in this ex-

ample. It is attached to "gave":

Gave: (T (CHOOSE TIME (BEFORE (NEWJTIME)

(CHOICE TIME) X))

NIL)

The "T" is the TEST, the " (CHOOSE... X") is the ACTION and

'.he "NIL" is 'he FLAG. This request says that the TIME,

that is, the time of the conceptualization being built,

should be set to some point before the time presently as-

sociated with the conceptualization. None of the other

•-ords in this sentence have the first typa of request at-

tached.

The second type of requests, those that belong to a

more general sense of a word, is found, in this sentence,

with the verb and article. The verb "gave" has the sense

GIVEl, which contains seven requests. Four of them are:

GIVE1:

((FEATURE SENSE (QUOTE HUMAN')) (CHOOSE RECIP SENSE) NIL)

((FEATURE SENSE (QUOTE POBJ)) (CHOOSE OBJ SENSE) NIL)

98

:

(T (DEFPROP TO TOl CURRENT) NIL)

((FEATURE SENSE (QUOTE POBJ))

(REPLACE CONCEPT

(QUOTE ((ACTOR (#SUBJ)^=jM ATRANS)

TO (#RECIP) FROM {4SÜB3)

OBJECT (#OBJ))

T i ME (NIL)

MODE (NIL))))

NIL)

The first request chooses the RECIP case to be the sense of

the first noun phrase followinq the verb (it must be fol-

lowing, since this request doesn't appear until the verb

does) that has the feature of being human. The second re-

quest chooses the OBJ case to be the sense of the first noun

phrase following the verb that has the feature of being a

physical object. Remembei that physical objects and humans

are disjoint sets. The third request, using the Lisp func-

tion DEFPROP, says that the word "to" is to be associated

with a particular sense TOl. Since this sense will not be

used in the examples I won't include its definition, but

busicaliy this sense puts the phrase following into the con-

ceptual TO case of an "ATRANS" conceptualization.

There is an alternative to setting the sense of the word

"to" to TOl. We could write a request for GIVEl that looked

for the word "to", and, when it found it, performed the

same actions that the sense TOl does. However, since this

use of "to" occurs with many "ATRAi'S" reJated verbs, a separate

sense is created for "to" so that it. can be shared.

The fourth request above assumes that the conceptual

structure for the sentence is the linear equivalent of the

following graph, if a physical object is seen:
RECIP)

(S UBJ)^-!> ATRANS ^2_ (OBJ) ^L
<(SUBJ)

99

I

i.

..

1
I

=
i

That is, the giving is the transfer of some physical object.

Assuming this structure, however, does not mean that it has

to be kept for the rest of the sentence. In this example,

it will indeed be part of the final result but the fifth

request on "GIVEl" can overwrite this structure. The fifth

request is:

{ {NORM_FIT SENSE ((ACTOR ONEl<s=>ONE2 OBJECT 0NE3)) NIL)

(INPLACE CONCEPT

(UTILIZE (NORMAL_MEANING SENSE)

(QUOTE (((ACTOR) CHOICE SUBJ))

((OBJECT) (CHOICE RECIP))))))

NIL)

NORM_FIT is a function that compares the conceptual structure

referred to by the form given by the second argument. In

this instance, the TEST is asking if the sense of the word

(or noun phrase) currently being read, refers to a simple

action. The "ONEl", "ONE2", and "ONE3", are dummy elements

that will match any Lisp S-exprassion the first time they

occur. If a dummy occurs again in the pattern it will match

ohly the same S-expression that it did before. INPLACE is

like REPLACE excspt that it does not perform some Lisp pointer

manipulation t!iat REPLACE does. UTILIZE, as mentioned,

takes the conceptual form, which NORMAL_MEANlNG finds in the

bundle of features and requests that make up a sense, replaces

certain elements in the form with other elements, and returns

the modified form. In this case, the one element paths,

(ACTOR) and (OBJECT), are followed and the choices for SUPJ

and RECIP, respectively, are placed at the ends of these paths.

This request will not oe activated for this example. The

sixth and seventh requests are basically like the fifth, but

the forms looked for are slightly different. These request3

will not be needed for our examples.

100

The other set of requests in the exairple belor.gs to the

word "a". There are no pseudo-morphologicaI requests in

the example on the word "a" itself but there are requests

for its sense, A. These requests are:

A:

(T (PROG NIL (tiETQ HOLD NIL)

(SAVE (2U0TE REF) (QUOTE A))) NIL)

(T (PROG NIL (SETQ ART__INT REQUESTS) (SETQ REQUESTS NIL)

(SETQ ACTIVE NIL)) NIL)

(T (ADDREQ ((PHRASE_BREAK)

(PROG NIL (SETQ SENSE (EVAL_PHRASE HOLD))

(SETQ PLACE (CONS (QUOTE PERIOD)

PLACE))

(oETQ WORD NIL)

(SETO REQUESTS ART_INT)

(SETQ ACTIVE T)

(CONSIDER)) NIL))

NIL)

The first request initiates the saving of the words that will

be used for the noun phrase. The words are put in a variable

called HOLD. The SAVE function call puts in HOLD a mark that

the phrase was introduced by "a". This information will be

needed by the memory in generating a referent for the phrase.

The second request stores the current list of requests in

ART_INT, empties REQUESTS itself, and sets ACTIVE to NIL.

This is so .nat no further requests will be added by the mon-

itor as it looks at succeeding words. The last request puts

one request on the freshly cleared list. This request looks

for the end of the phrase. PHRASE_BREAK is a predicate that

becomes true when anything other than a noun or an adjective

is seen. When this occurs, a number of actions are per-

formed. First, the SENSE to be returned is built by apply-

ing the function EVAL_?HRASE to the list of words collected

101

I .

I

i .

into HOLD. The changes to the values of PLACE and WORD are

purely to keep the monitor from being confused and skipping

over either the next word in the sentence (for which a dummy

word is placed in front of the rest of th3 sentence) or

neglecting to notice the newly constructed SENSE (for which

WORD is set to NIL, which signals a change in SENSE to the

monitor). The next action resets REQUESTS to it« original

value. The variable ACTIVE is reset to T. Finally the func-

tion CONSIDER is called which causes an irameiüate checking

of REQUESTS to see if the new SENSE satisfies any expecta-

tions.

There is one fii 1 request to mention. It is not at-

tached to any word but is assumed by the monitor before the

sentence begins. This request is:

((OR (NOT (EMPTY CONCEPT))

(FEATURE SENSE (QUOTE PP))

(NORMAL_MEANING SENSE))

(COND ((NOT (EMPTY CINCEPT)) NIL)

((FEATURE SENSE (QUOTE PP)) (CHOOSE SUB.T SENSE))

(T (REPLACE CONCEPT

(UTILIZE (NORMAL_MEANING SENSE) NIL))))

NIL))

The TEST of this request looks for three possible situations.

The first one, which is true if CONCEPT has been given a

value, performs the function of removing this request (by

activating it to perform a null action) after the piocessing

of the sentence is begun. The second situation is the nor-

mal one, whore :he sentence begins with a noun phrase refer-

ring to a simp' ■ objoct (PP in Conceptual Dependency ti-rmn) .

In this CvSei the noun phrase is saved a:i the SUBJ. Thn

third situation is when- thn sei. nco begins with a noun

phrase reforring to a conceptualization, e.g., "a beating"

02

or "the trip"i in which case this conceptualization is placod

directly i;\to CONCEPT. Later requests provided by other

words will tell wnat to do with this conceptualization.

The other set of information contained in a sentence

is the set of features associated with the words of the

sentence. One feature is common to the senses of all three

nouns in this example. It is:

J0HN1, MARY1, B00K1 substitute for X in:

((ACTOR (X)^^(CONTYPE VAL (PP))))

That is, all tnree are things, conceptually.

Two features are in common between J0HN1 and MARY1.

They are:

J0HN1, MARY1 substitute for X in:

((ACTOR (X)^^ (CLASS VAL (HUMAN)))) and

((ACTOR (X)^Bsa^ (WORDTYPE VAL (NAME))))

The first feature says that "John" and "Mary" have tenses

that refer to humans. The second feature -ray that "John"

and "Mary" are names, and hence do not require articles pre-

ceding them. This could probably be better handled by hav-

ing a request on "John" and "Mary" return for the value of

SENSE the conceptual representation of "the person who is

called John (Mary)", but a simple feature is good enough

for our purposes.

Finally there is a feature for each noun that does not

apply to the father two.

((ACTOR (JOHN 1)^=^(SEX VAL (MALE))))

((ACTOR (MARYl)^ar>(SEX VAL (FEMALE))))

((ACTOR (BOOK1) ^^(CLASS VAL (POBJ))))

The first two features would be necessary if the analyzer

were doing pronominal reference, but are not of importance

in any discussion that follows. The last feature is important,

and aays that a book is a physical object, as opposed to a

103

human or an animal.

With these requests and features described, we can

trace the flow of the analysl.n as the monitor reads the

sentence. First, the word "Johri" i;: seen. The word '»as

no requests of its own to add nor doo^. the sense J0HH1

which is attached to it. However, because JOHNl has the

feature PP it does satisfy the request to which REQUESTS

was initialized, and so JOHNl is chosen as the subject.

Next the word "gave" is read. The request attached

to the word "gave" itself Is added to the list. Because

the TEST of this request is "T", -t is executed immediately,

causing the TIME of the conceptualization being built

(which is empty at the moment) to be set in the past, before

the time of utterance. The word "gave" itself satisfies no

expectations. The sense G'iVEl also satisfiesno expectations.

The requests it has r>re added to REQUESTS. Their evaluation

causes one action to occur, because one request has "T" as

a TEST. This triggered request sets the sense of "to" to

T01.

Next the word "Mary" is read. The word "Mary" itself

has no features nor requests. The sense MARY1 also has no

requests. However, there are features associated with MARY1

and these trigger one request. This is the request that ir.

expecting SENSE to takr on a value that has the feature HUMAN

MARY1 has this feature. The triggered request chooses MARY1

to be the RECIP. Because of the initial setting of pointers

in CONCEPT this means that MARYJ will also fill ir. the "TO"

slot in CONCEPT, if the ATRANS structure is built.

The next word read is "a". Neither it nor its sense,

A, have any features to satisfy the set of expectations

still in REQUESTS. Nor dees the word "a" have any requests

of its own to add. '.The sense A, htwever, has several re-

quests, all of which have "T" as their TEST and so are exe-

104

»*

cuted immediately. The actions performed start the build-

ing of a noun phrase list, set ACTIVE to NIL, save the

current set of requests in the variable ART_INT, and replace

REQUESTS with one request that looks for the end of the

phrase.
L!

The neyt word read is "book"'. B-=>cau'jfe ACTIVE is NIL
- -

the only Miing that happens is that "book" dnd B00K1, its

sense, are checked against the one request present on

REQUESTS. Neither satisfies the exoectation for an end to

the phrase and so BOOK1 is placed on the holding list.

The next word read is PERIOD. This is a mark that

says the sentence is finished. PERIOD does not have any

requests or features jf its own. However, it does satisfy

the TEST of the rea.est looking for a phrase end. The

request is activated and huilds the noun phrase "(BOOKl

REF (A))", which is put as the current Value of SENSE. It

also resets REQUESTS to the value it had before "a" was

encountered, sets ACTIVE back to T, and calls for an im-

mediate rechecking of the restored REQUESTS list. The

value of SENSE satisfies the two requests looking for a

SENSE referring to a physical object. The actions result-

ing choose "(BOOKl REF (A))" to be the OBJ, make ATRANS

the main act, and place SENSE as the OBJECT of this act.

No other requests are activated, no more words are found,

and the analysis is finished. The final result is:

((ACTOR (J0HN1)4=B^(ATRANS) TO (MARY1) FROM (JOHNl)

OBJECT (BOOKl REF (A))) TIME (TIM01)

MODE (NIL))

where TIM01 has the Lisp-value "((BEFORE TIM00 X))", and

TIM00 has the Lisp-value " i (VAL TK". The basic graphic

form of this is:
j—)MARY

JOHN^-^ATRANS^-2- BOOK « 1
I—^JOHN

i05

i fifc Ilil

• *

i
The second example is "John gava Mary a beating".

The focus here is on the way a verb like "give" can pill

together other elements of the sentence, while itself con-

tributing no conceptual structures. The final result is

the same as the result of analyzing "John beat Mary".

Manipulating other structures is a very common job for

*• "give" to do and there are other verbs that can function

the same wav. For example, "John took a walk" mo»ans the

same as "John went walking". "John got Mary a job" de-

pends primarily on what "a job" means. "John stole a peek"

and "John made a noise" are further examples of verb uses

where a large part of the verb's "meaning" L& the manip Na-

tion of other meanings.

We have already given all the informaticn necessary

for describing the analysis of this sentence, except for

the definition of the word "beating". "Beating" is a noun,

like "book", but it is not a physical object or a PP.

"Beating" has only one feature associated with BEAT1, its

sense. This is a conceptualization of the form:

((Rl (BEAT1) REL (NORMAL_MEANING)

R2 ((ACTOR (0NE1)^=^(PR0PEL) OBJECT (0NE2)

INST ((ACTOR (SACTOR;^=B^(MOVE) TO (sOBJECT)

OBJECT ((HAND) PART (sACTOR)))

TIME (.TIME)))

TIME (NIL) MAHNER (REPEATEDLY))))

The Rl, R2 and REL are used to represent relationships

in a general fashion, but this is only a tentative represen-

tation. RiL is a link atom followed by the name of the re-

lationsnip. Rl and R2 are the first and second arguments

of the relationship, respectively. In this case the ala-

tionship is called NORKAL_MEANING. Its first argument is

a sense name, and its second argument is a conceptual struc-

Senses that refer to simple things are not treated

106

t ure,

this way but should ha. That is, wher»? now the analyzer

uses the sense nam^ BOOK1 in a graph structure, it should

refer to a feature specifying the NORMAL_MEANING for BOOKl

However this lack of consistency is not crucial at this

t ime.

The meaning of "beating" that this feature specifies

is graphically:
ONEl

0NE1*--^PR0PEL^_0NE2< t-
T MANNER Md^E

REPEATEDLY t

HAND (ONEl)

" OMI: ONE2

Mote that the various occurrences of ONEl and 0NE2 are in-

tended to be references to unique nodes, because of the

■ constructs that appear in the linear form of this graph.

The analysis of "John gave Mary a beating" proceeds

as it did in "John gave Mary a book" until the very last

word. When "beating" is discovered, REQUESTS has been

saved in ART_INT and reset to a request looking for the end

of the noun phrase initiated by "a". The word "beating" is

read and accepted as a noun, that is, it is not a noun

phrase terminator. It is saved on the holding list and

the next word is read. This is "PERIOD" and this does

terminate the noun phrase. The noun phrase returned is

thus "(BEAT1 REF (A))", where "BEAT1" is the sense of the

noun "beating". With the phrase finished, REQUESTS is re-

set to the value saved on ART INT, which still has two re-

quests waiting. One is looking for a physical object and

the other for the name of an action. In tY s example, the

latter is satisfied. Hence the function INPLACE la called

to overwrite any current structure in CONCEPT. CONCEPT is

jet to the structure that is the N0RMAL_MEAN1NG of BEAT1.

107

The function UTILIZE takes this structure and at the same

time takes the current values of SUBJ (which is set to

JOHNl) and RECIP (which is set to MARY1) and places them

in the positions of ACTOR and OBJ, respectively. The

TIME of the new conceotualization is set to that of the

old unless otherwise specified. With this done, the sentence

is ended, and the final analysis result is:

((ACTOR (JOHNl)<==>(HROPELv OBJECT (MARY1)

INST {(ACTOR (JOHNl)^=^(MOVE) TO (MAF.Yl)

OBJECT (HAND PART (JOHNl))) TIME (TIM0i)))

TIME (TIM01) MANNER (REPEATEDLY))

where TIM01 has the value "((BEFORE TIM00 X))" and TIM00

has the value "((VAL T)!". Graphically this is:

JOHN
JOHNf=^PROPEL<^-MARY<1 Ih

t MANNER M(£, MOVE

PEPLATEDLV
HAND (JOHN)

lb

Ä Ma
C3 MA/?Y

A bit .Tiore rapidly, we can look ac the analysis of

a sentence like "John advised Mary to drink »-ho wine."

This example shows how the function r".jED works to shift

the levels of manipulation. First, though, we must give

the requests that a »■■ found for the words that appear in

the sentence. There is one for each of the two verb forms:

advised:

(T 'CHOOSE TIME (3EF0RE (NE W_T I ME) (CHOICE TIME) >;)) .-.j j L)

drink:

f (NEEDJTIME) (CHOOSE TIME (CHOICE TIME)) NIL)

Thö request for "advised" is the same "past-tense"

request used with "gave". The request for "drink" has the

predicate (NEED_TIME, instead of a "T" because "drink" may

either be a preser*- tense form or a non-tensed Infinitive.

Normally (NEEDJTIME) rpturns the value T but certain other

108

words have requests that set (NEED_TIME) to return NIL.

One of the senses of "to", the one in fact that will be

used in this example, has an instance of such a request.

If (NEED_TIME) returns T then the action associated with

it says that the TIME to use is the one currently set.

This request is vacuous in the current system and is a

remnant of an earlier version of the analyzer that did not

include a default assumption of current time if nothing

about TIME was specified.

"Advised" has the sense ADVISEl, which is the follow-

ing set of requestsi

ADVISEl: (T (REPLACE CONCEPT

(QUOTEMACTOR (»SUBJ)4 Ji(MTRANS)

TO (CP PART (#RECIP) REF (THE))

FROM (CP PART (#SUBJ) REF (THE)) MOBJECT

('CON (NIL TIM (>) MODE (NIL))^.C

((ACTOR (#RECIP)^=-^T (JOY)^^F (JOY))

INC (2) TIME (gMOBO.CT CON TIME) MODE (NIL)))))

MODi: (NIL) TIME (NIL)))) NIL)

IE (DEEP HOP TO TO0 CURRENT) NIL)

(FtJATURE ZEUSE (^UOTtl UUMArJ))

(CHOOSE RECIP SENSE) Nil)

The first request produces a conceptual form equivalent

to:

^CP (RECIP)
(SUBJ). MT PANS«—

RECIP)^

pp>CP (RE

I—(CP (SU BJ)

C JOY (x+;?)

IY (Y)

This is, in English, expressible as SUBJ telling RECIP that

if RECIP does something then RECIP will become happier.

Now this is nothing more than a rough approximation to what

"advise" means. It is actually a communication of a morn

general statement that if RECIP does something he will, on

109

I.

!:

..

1
I

some unspecified scale, be better off than if he does not

do this action. However the above approximation is good

enough for our purposes.

The second request is like the request that gave "to"

a meaning in GIVE1 but, as we shall see, TO0 is quite dif-

ferent from TOl. The last request is just like the request

to fill RECIP that appeared with "GIVE1".

The verb "drink" also has a set of requests:

DRINK1: (T (REPLACE CONCEPT

(ßUOTE

((ACTOR («SUBJ)H*(INGEST)

OBJECT (fOBJ)

TO (INSIDE PART (#SUBJ))

FROM (MOUTH PART (#SOBJ)))

MODE (NIL) TIME (NIL))))

r.' I L)

((FEATURE SENSE (QUOTE POBJ))

(CHOOSE OBJ SENSE) NIL)

The first request sets CONCEPT to a representation of

"drinking". Graphically this is:

p^INSIDE (SUBJ)
(SUBJ)^—^INGEST<-^-iOBJ) (I

L-<MOUTH (SUBJ)

The second request looks for anything physical to use

as the object of the ingesting. Now it is true that drink-

ing wants an object that is a liquid, and this information

should be made available to the deductive section of memory

by the analyzer. Thus, a fuller graph for DRINK1 would

have a predication on the object that the OBJECT is a

liquid. However, while this information should be part

of the output of the analyzer, it docs not affect the analy-

sis itself. That is, if the sentence was "John drank a

chair", the fact that a chair is not a liquid does not

110

prevent this sense of "drink" tror. being used nor does it

change the result, which would be that John ingested a

chair and the chair must have been liquid. A different mat-

ter however, for example, is the fact that "Mary" refers

to a human, not just to a physical object. This feature

affects the decision the analyzer makes when it reads "Mary

was given..." as opposed to the decision it makes with

"The book was given...".

There is also a request for TO0, the sense of "to"

which : -»s been set by a request of GIVE1.

TO0 has the form:

TO0: (T (PROG NIL (IMBED (MOBJECT CON)

((SUBJ CHOICE RECIP)

(TIME AFTER (NEW_TIME) CHOICE TIMF) X))

((BREAK_POINT) (RESET_ALL) NIL))

(SETQ USEJTIME NIL)) NIL)

This request has two actions. The second, and simpler,

is the setting of the variable USE_TIME to NIL. This vari-

able ii. referred to by the function NEED_TIME, and the value

NIL indicates that a TIME is not needed. The first action

is an IMBED call. There are several subactions that IMBED

can perform and this example uses them all. The first

argument to IMBED gives a path which IMBED will follow.

The value of CONCEPT will be saved and CONCEPT will be.

reset 'IO the (possible empty) structure at the p;id of this

path. The second argument specifies some new values for,

in this case, SUBJ and TIME. IMBED first saves the former

values of SUBJ, OBJ, and HECIP, then sets the three vari-

ables to NIL. Then the second argument, which is a list

of pairs, tells IMBED that the first element of each pair

shoul:1 be set to the value of the second, where, in the

second elemput, all references to varialles are to their

values before IMBED was c.illed.

The analysis of the -sentenre "John advised Mary to

111

»V

drink the wine" proceeds simply enough. The monitor-ini-

tialized request looking for a subject (SUBJ) is satis-

fied by "John". "Advised" and ADVISEl satisfy no requests

but add then own to REQUESTS and further change CONCEPT

(and hence ANSWER) to a conceptual skeleton of the MTRANS

action. "Mary" has the sense MARY1 which satisfies the

request lookir.g for a recipient of the MTRANS. The word

"to" has the sense TO0. IMBED is called by TQ0 and moves

CONCEPT to head of the causal that makes up the conceptu-

alization being MTRANSed. IMBED also resets REQUESTS.

"John" has the sense J0HN1 which satisfies the request now

being -r.ade for 5UBJ. "Drink" has the sense DRINK1 which

puts the conceptual skeleton for a drinking action into

CONCEPT (which is still pointing to the head of the causal

in the MOBJECT slot). "Wine" has the sense WINE! which

satisfies the request looking for an OBJ of the drinking.

The end of r.he sentence causes REQUESTS and the syntactic

cases and CONCEPT to be returned to the values they had

before "to" was encountered. REQUESTS is checked again,

nothing happens, and the analysis is over. The value of

ANSWER {in graphic form is:
MARYA—A1N(.,<!• <MARY) 0 T

,-<CP (J0HN, MA*.—
I—<JOY (X)

This says that John „ommunicated to Mary that her

ingesting wine coulc cause her to undergo a positive in-

crease in the joy she feels.

The output in linear form is:

((ACTOR (JOHNl)(—^(MTRANS)

TO (CP PART (MARY1) REF (THE))

FROM (CP PART (JOHN1) REF (THE))

MOBJECT ((CON ((ACTOR (MARY 1)^^ (INGE ST)

JOHNV-^MTRAN NS«——I

JGEST^ •WINE

I j-^JOY (X-t-2)

112

OBJECT (WINE REF (THE))

TO (INSIDE PART (MAP.Y1))

FROM (MOUTH FART (MARY1))) MODE (NIL)

TIME (TIM02))

i(=C ((ACTOR (MARYD^M^T (JOY)4^^F (JOY))

INC (2) TIME (TIM02) MODE (NIL)))))

MODE (NIL) TIME (TIM01))

where TIM02 has the value ((AFTER TIM01)) and TIM01 has the

value ((BEFORE TIM00 X)) and TIM00 has the value ((VAL T)).

The next example is "John killed Mary by choKing Mary".

It contrasts with the "gave a beating" example in t).e kind

uf manipulation that occurs. In "John gave Mary a beating",

the meaning of "give" was a set of actions more than some

conceptual piece. The actions built a conceptualization

from a structure attached to other words in the sentence.

In this example, "John killed Mary by choking Mary", the

word "by" ties together two large conceptual pieces, "John

did something that caused Mary to die" and "John grabbed

Mary's neck so she couldn't breathe". "By" asks questions

about conceptualizations rather than about words and differs

from "give" in that way.

BVl, the sense assigned to this use of "by", has the

following job to do. It has to tie together two conceptu-

alizations, a main one and a secondary one, making the lat-

ter "instrumental" to the former. If the two actions are

simple EVENT«, then the main action has the secondary action

in its INSTRUMENTAL case. If the main action is & causal

and the antecedent is unspecified (graphically there is a

dummy "do" written for the act) then the secondary action

is helping to specify the antecedent. If the secondary ac-

tion is a simple act then it is directly placed in the

antecedent slot. This happens in "John angered Mary by

11.3

giving Bill the book," where the ATRANS action by John

made Mary angry. If the secondary action is a causal it-

self, then the effect event of this secondary action is in

turn the antecedent event of the main action. This hap-

f pens in our example, as we shall see.

*• The requests for BY1 are as follows-

r BY1:

U ((CHOICE ^=)

(PROG NIL
i

J (REPLACE CONCEPT

_ (QUOTE ((CON (NIL TIME

(BEFORE (NEWJTIME)

(CHOICE CON TIME) X)

MODE (NIL))

A CONCEPT))))

(ADDREQ

((AND (CHOICE CON) (CAR (CHOICE CON)))

(COND ((EQUAL (CHOICE A CON ^=>)

(QUOTE (DO)))

(COND ((CHOICE C3N 4v)

(RPLACA (SEARCH (QUOTE CON)

(CAR (SEARCH (QUOTEA)

CONCEPT)))

P (CHOICE CON ^s)))

• ((CHOICE CCN^-^)

(REPLACE COHC'iPT

(QUOTE ((CON (#CON)

<S- (• A^»))))
NIL)))))))

(IMBED CON ((SUBJ CHOICE SU3J))

{(ßREAK_POINT) (RESET_ALL) NIL)))
NIL)

114

i

UCHOICE^»^) (IMBED INST ((SUBJ CHOICE tUIUJ))

((BREAK_POINTi (RESET_ALL) NIL))

NIL)

This definition of BYl, as will be pointed out r.'iortly

is wrong and a better one would be simpler. However,

this definition is a good example of how complex the actions

that requests perform can be, if it Ls necessary. The op-

erations above are more like memory routines in that con-

ceptual structures are being manipulated according to fea-

tures of other conceptual structures rather than according

to linguistic factors. This capability of the analyzer, to

go as deep conceptually as it needs, is an important as-

pect of this approach.

The abcve definition consif .s of two requests. Each

one has an expectation about tne structure of CONCEPT.

The first one looks for CONCEPT to be a causal re 1 ationshipf

while the second looks for CONCEPT to be a" actor. If

the second succeeds, the actio. pe-rformed is an IMBED that

will cause the clause following the "by" to be analyzed

as a specification of the instrument, INST, of this action.

The first request, if its expectation is satisfled, performs

three subactions. The first action is to attach a new

slot to CONCEPT and make the whole structure the new value

of CONCEPT. The third subaction is an IMBED that causes

the clause following the "by" to be interpreted as filling

in this ampty slot. The second subaction is concerned

with the fact that if the clause preceding the "by", tho

main clause of the sentence, was interpreted as meaning the

SUBJ did some unknown action that caused something else to

happen, then the "by" clause is specifying the unknown ac-

tion. This is done by having the second subaction add a

request that waits for the empty slot to be filled. The

115

.

action for this new request, if the main cimse is a causal

with an antecedent "DO" action, combines the "by" clause

conceptualization with the main clause conceptualization

by the following paradigm:

Y Z

X one» x» DO X Y
t A 1 f then return f*f

Y Z

XA or'H A) ü0
then return

Z Y

These are the requests, then, for "by". The requests for "killed"

and "choking" are fortunately much simpler. The word

"killed" has the same past tense request that "gave" and

"advised" had. Nothing at the moment is done with "chok-

ing" except to recognize that it is a form of "choke". Some

words ha"e requests that test for an "-ing" form, such as

forms of the word "be", but none occur in this example.

The major requests in this sentence then are BY1, above and

KILL1 and CH0KE1 below:

KILL1: (T

(REPLACE CONCEPT

(QUOTE ({CON ((ACTOR (#SUPJ)^=*>(DO))

TIME (NIL) MODE (NIL))

^((ACTOR (^OEJ)

$^T (HEALTH VAL (-10)))

MODE (NIL) TIME (NIL))))))

NIL)

((FEATURE SENSE (QUOTE HUMAN)) (CHOOSE OBJ SENSE) NIL)

CHOKE1: (T

(REPLACE CONCEPT

(QUOTE ((CON ((ACTOR («SUBJ)«■►(GRASP)

OBJECT (NECK PART (#OBJ)))

TIME (NIL))

116

4»((ACTOR (»CON OBJECT PARTI

(—>(INGEST)

OBJECT (AIR REF (A))

FROM (MOUTH PART (=^ACTOR))

TO (INSIDE PART (£^E: ACTOR)))

TIME (NIL) ^ODE ((CANNOT))))

")) NIL)

((FEATURE SENSE (Q1 fE PP)) (CHOICI OBJ SENSE) NIL)

Both senses consist of two requests. In each case,

the first request provides the conceptual structure and

the second looks for a filler for the OBJ case. The two

first requests provide conceptualizations whose main link

is a causal.

The conceptual structure for KILL1 says that someone

did something that caused someone to die. Tho conceptual

structure for CHOKEl says that someone grabbed someone's

neck, causing th?.t person to be unable to breathe. The

KILLi requests have been slightly simplified from a form

that handles "the beating killed Bill" as well as "John

killed Bill". And the check for HUMAN in the KILLl re-

quest looking for an OBJ should be PP, as it is with CHOKEl.

This is like the situation with "drink" where it might seem

reasonable to check for "liquid" as a feature of the OBJ.

Even though "John killed the deük" is indeed strange, it 1=

strange not because of a peculiarity of "kill" in English

but because the output of the analysis, that a desk dies,

is strange conceptually.

The analysis of "John killed Mary by choking Mary" is

simple enough until "by"is reached. The value of CONCEPT

at this point is, graphically:

JOHN^—^J0

t
MARY *c >HEALTH (-10)

117

..

BY1 then sets aside the requests still waiting, sets

SUBJ to J0HN1, and starts building another conceptual struct-

ure from "choking Mary". When the end of the sentence is

reached the substructure that has been built is, grapn-

i c a 11 y :

JOKN$=*GRASPt NECK (MARY;

f
MARY<=-> INGEST*^-A IRf^-

INSIDE (MARY)

-< MOUTH (MARY)

Because the end of the sentence has been reached, the

RESET_ALL request that was provided by the IMBED call operates

to bring back the original REQUESTS, including the one that

looks to sec if a conceptualization has been built. One

has been, and the request, according to th^ paradigm given,

takes the "kill" conceptualization and the "^hoke" concep-

tualization and forms the final answer, whicv graphically

is:

JOHN 4=^ GRASP ^-NECK (MARY)

MARY <^T>INGEST« AIR

' A
MARY«=£^INGEST*-fi-AIR

MARY <-c HEALTH (-10)

a

This involves two conceptual forms. The first one

says that John grasped Mary's neck causing her to be unable

(marked by «f on the ^ ^ link) to breathe. The second one

says that this inability to breathe caused Mary tc die,

where death is the lowest point on a scale of health.

It was said earlier chat this definition of BY1 was

incorrect. In the abovt example it produces the correct

answer, but consider the sentence "John annoyed Mary by

choking Bill." "John annoyed Mary" is analyzed to produce

the causal structure:

118

JOHN*—* DO

t
MARY
<

ANCER (X+2)

ANGER (X)

Thus the pattern for "annoy" is the same as for "kill", ^s

far as BYl is concerned. However it is neither necessarily

true nor even probably true that Mary was annoyed by Bill

being unable to breathe. Rather it was the whole event,

of John causing Bill to be unable to breathe, that annoyed

her. BYl should more simply say that the conceptualization,

assigned to the clause following "by", replaces the dummy

causing action in the conceptualization for the main clause,

if there is a dummy action. It is an inference from world

knowledge that decides what aspect of the "by" conceptuali-

zation caused the final result. Thus with "John killed

Mary by cnoking Mary", it is a fact about humans (and

animals in general) that they die from being unable to

breathe.

A simpler sentence than the previous one, but demon-

strating that not everything in the analyzer must be com-

plicated because it goes so deep, is the sentence "Did

John give Mary a book?" The only element of this sentence

that hasn't been described already is "did". The word

"did" has a past tens*; request like "gave". The sense of

"did" used is D01, and it has two requests:

DC1: ((NULL (CAR (CHOICE SUBJ)))

(RPLACA (CHOICE MODE)

(CONS (QUOTE n (CAR (CHOICE MODE))))

NIL)

(T (KETpUSEJTIME NIL) NIL)

The second request says that the time specification

has already been taken care of. Therefore USE TIME is set

119

u

..

..

to NIL so that (NEED_T1ME) returns false and a later verb forn

will not affect the value of TIME. The first request is

activated if no SUBJ has been chosen yet, that is, if the

word form of D01 is before any noun phrase in the sentence.

If this is true then the MODE of the conceptualization to

be built i'j set to "?" which means that a question is being

asked about the truth of the conceptualization. This is

all that "DOl" consists of.

The analysis of "Did John give Mary a book?" starts

with the requests for "did" setting the TIME to before thi>

time of utterance, setting USE_TIME to NIL, and setting

MODE to "?". The rest of the sentence prodeeds exactly

as before, except that the time setting request on "give",

which is like the one for "drink", is not activated. The

final result is thus:

((ACT^R ;J0HN1)<—^(ATRANS) TO (MARY1)

FROM (J0HN15 OBJECT (BO0K1 REF (A)))

TIME (TIM01) MODE ((?)))

where TTM01 is before TIM00 in value.

Th;. next example, "John prevented Mary from buying

the book by giving the book to Rita," is a reasonably complex

sentence but turns out not to require much more than we've

already described. The words with requests not previously

given are "prevented", "from" and "buying". We won't take

time to describe "buying" simply because it is not substan-

tially different from previously given verbs. Basically

it has a request that produces the following structure:

fSUDJ)^-^ATRANS<-^-MONEY

ONElf=^> ATRANSeL- (0DJ)<-1

R _4 0NE1
<

—< (SUB. UBJ)

r-*(suBj)

lONEl

There is also a request with "buy" that changes the

120

current sense of "from" so that if a human follows, that

person fills the positions indicated by "0NE1" in the graph.

There are the usual requests for GUdJ and OBJ. Finally

there is a request that looks for a human who is neither

the SUBJ nor the object of "from". If one occurs, then the

whole buying action is embedded within a larger conceptu-

alization that says that this buying was done in order to

give the object bought to this other person. This request

is for handling "John bought Mary a book." However, this

request is not invoked in the current example.

The requests for "prevented" are the past tense request

plus the requests that make up PREVENT1:

PREVENT1:

(T (REPLACE CONCEPT

(QUOTE ((CON ((ACTOR (#SUBJ)4-^(DO))

TIME (NIL))

^B»((ACTOR (#OBJ)^=^(DO))

TIME (NIL) MODE ((CANNOT))))

)))NIL)

(T (DEPPPOP BY BYl CURRENT) NIL)

((FEATURE SENSE (QUOTE HUMAN)) (CHOOSE OBJ SEN^E1 NIL)

(T (DEFPROP FROM FROM0 CURREN) NIL)

The first request produces the following structure:

(SUBJ)te^

(OBJ)fes^ D

DO

1

That is, "prevent" says that someone did something which

caused someone else to be unable to do something. Tn ,

second and fourth requests set senses for "frorrf*and "by",

and the third request looks for the person being prevented.

The sense given to "by" is the same as was described before.

The senie assigned to "from" has the request:

. •

..

**

FF.OM0:

(T (IMDED^—((MODE QUOTE ((CANNOT)))

(TIME CHOICE^asTIME)

(SUBJ CHOICE OBJ))

((OR (EQ WORD (QUOTE BY))

(BREAK_POIN'I))

(RESET_ALL) NIL))

NIL)

There are two reasons why FROM0 -s much simpler than BYi.

First, F.";OM0 i5 specific to "prevent" and takes advantage

of the knowledge that there is a dummy action present. BYI,

being more general than is needed here, must first look to

see if there is a dummy action to be filled. The other

reason for the simplicity of FROM0 is that FROM0 does not

worry, as BYI incorrectly does, about breaking up the

conceptualization assigned to the clause it precedes. What-

ever conceptualization is built i? placed, through IMBED, at

the effect end of the causal link.

The analysis of the sentence proceeds simply. When

the "from" is reached, the value of CONCEPT is, graphically:

JOHN4-4DO

t
MARY^-y^DO

The "from" requests set CONCEPT to where "MARYte^DO" cur-

rently is, saves the information that MARY1 is the SUBJ

and that the MODE is CANNOT. The analysis then produces

the substructure:

-^ONEl
MARY4 o R

>ATRANS ^—.MONEY*— u L-^MARY
MARY

0NE1^->)ATRANS^2-.B00K^ 5-J
L(ONEl

This is the "buy" structure with MARY1 replacing SUBJ

122

and BOOKl replacing OBJ and with a modification of the

whole event by "(f", i.e. CANNOT. This structure is now

in the place where "MARyÄJ^DO" used to be. The building

of this structure ends with the encountering of the word

"by". The request of FROM0 that is triggered by the dis-

covery of the word "by" causes the "from" clause to be

ended. This resets the various variables to the main clause

level. Then the word "by" itself causes another embed-

ding, this time to replace *,J0HN<=4D0M in the conceptuali-

zation. The information passed says that JOHNl is the sub-

ject of this clause. The structure that is then built is:

► RITA
JOHN^—*AT RAN S«-2-BOOK

< (JOHN

The end of this clause is also the end of the sentence.

The final result is:

((CON ((ACTOR (JOHNl)^^(ATRANS) TO (RITAl) FROM (JOHNl)

OBJECT (BOOKl REF (THE))) MODE (NIL)

TIME (TIM02))

4B((CON i (ACTOR (MARYD^n^ATRANS) OBJECT (MONEY)

TO (NIL) FROM (MARY1)) TIME fTIMgll))

<3S, s^t {ACTOR (NID^r1, ATRANS)

OBJECT (BOOKl REF (THE))

TO (MARY1) FROM (NIL)) TIME (TIM01)))

MODE ((CANNOT)))))

where TIM02 is before TIM01 which is before T1H00 which has

the value T. Graphically this is;

R r>RITA
J0HN^=^ATRANSt-2-BOOK £—J

MARV f ONE1 Uj0HN

AT^ANS ATRANS
T0 y ♦ o

MONEY *T* BOOK

TR . T
jc——i- X^^- MARr ONE1 ONrl MARY

123

I-

I

It would seem to be a fairly obvious assumption th?c the

** person, ONEi , who might have sold the book to Mary is

John. However, this requires knowledge about how the trans-

y fer of an object can prevent its purchase. It also requires

making a decision that the two occurrences of "the book"

are referring to the same itfm. The analyzer does not make

such decisions at this time. If it did, then it could

deduce that ONEI was JCHNl because JOHNl ic the only per-

son found who is capacle of ATRANSing the book away from

I
I i

himself (as evidenced by the statement that he gave it to
v. #

Rita) •
f

The verb "want", in the sense of desiring something,

is another example of the analyzer doing a little of the

work that might be considered the job of memory. There
t .

are four requests for "want" that allow it to handle the'

following kinds of sentences:

John wan*-.s a book.

John wants Mary.

John wants to buy a book.

i John wants Mary to buy a book.

The set of four requests, which has ehe name WANT], is:

WANT1:

((FEATURE SENSE (2"0TE PP)) (CHOOSE OBJ SENSE) NIL)

(T (DEFPROP TO T03 CURRENT) NIL)

(T (REPLACE CONCEPT

(QUOTE

((CON ((CON (NIL TIME •'>) MODE NIL))

^C((ACTOR (#SUBJ)4B^T (JOY)^B^F (JOY))

INC (2) TIME (>))))

^(MLOC VAL (LTM PART (#SUBJ)

REF (THE))))

MODE (NIL) TIME (NIL))))

NIL)

124

(T (ADD_BP

(COND ((SETQ TEMP2 (WALK (QUOTE (CCN CON)) CONCEPT))

(COND ((CAR TEMP2) NIL)

((FEATURE (CAR (CHOICE OBJ)) (QUOTE HUMAN))

(REPLACE TEMP2

(QUOTE ((ACTOR (*OBJ)^-«^(PTR^.NS)

OBJECT (♦OBJ) TO (iS»'JJ:

FROM (NIL)) TIME (>)))))

((FEATURE (CAR (CHOICE OBJ)) (QUOTE POBJ))

(REPLACE TEMP2

(QUOTE ((ACTOR (ONE1)^=^(ATRANS)

OBJECT (#OBJ) TO (#SUBJ)

FROM (sACTOR))

TIME (,>)))))))))
NIL;

The first request looks for any conceptual thing to

setve as the OBJ of "want". There niay not be an OBJ, of

course. The second request sets the sense of "to" to T03

which will be shown shortly. T03 functions basically to

introduce a clause that describes what is wanted. The

thrid request is the basic frame for wanting, that is, that,

in the long term memory of the SUBJ, there is the belief

that some particular thing will cause him to be happier.

The fourth request insures that what is wanted is always

some event. It uses the function ADD_BP, which is like

ADDREQ except that the request added has BREAK_POINT as its

TEST. Thus the argument to ADD_BP wil! be evalutate when

the clause containing "want" ends. The ACTION looks at

the conceptualization which has been built, when the end

of the clause is reached describing what the SUBJ wants.

The function WALK that is used is just a generalized form

of CHOICE, and the arguments (CON CON) and CONCEPT point

to the coi.ceptual object of the wanting. If a jonceptuali-

125

1

zation has been built there, nothing more is done. However

if nothing has yet been constructed, this request fills in

the gap. It does this in one of two ways, depending on

whether the object involved in the desire is a person or
I*

a thing. If OBJ is a human, then the event that would

please the SUBJ is for the OBJ to come to the SUBJ. If

the OBJ is a thing, then SU3J wishes to get, somehow, this

thing.

The request for T03 is:

TO 3:
l* (T (PROG NIL

(IMBED (CON CON)

((SUBJ COND ((NULL (CAR (CHOICE OBJ)))

(CHOICE SUBJ))

i (T (CHOICE OBJ)))

(TIME AFTER (NEWJTIME)

((CHOICE TIME) X))

((BREAKPOINT) (RESET_ALL) NIL))

(3ETQ USEJTIME NIL))

NIL)

This request shifts the level of manipulations, after

"to" is read, to the point where what SUBJ believes would

give him pleasure is described. The SUBJ of the new clause

is either the OBJ of the dominating clause, if there is

an OBJ, or it is the SUBJ of that clause.

These requests are all that are needed to analyze the

sentences given. In the first one, "John wants a book" and

the second one, "John wants Mary," no "to" clause occurs

before the end of the sentence. mhorefore the analyzer

finds that it has built no conceptualization for what John

wants when the sentence is finished. The request that was

added by ADD_BP is evaluated, with the OBJ set to "(BOOKl

REF (A))" in the first case and "(MARY1)" in the se:ond,

126

:

and with CONCEPT equal to

□
lr JO

JOHN £s-H

MLOC (LTM (JOHN))
Y (X+2)

(JOY (Y)

If the ADD_BP request sees OBJ equal to " (BOOK1 REF (A))",

then it produces the following structure, and puts it where

the gap, "O i:, currently is:
+w^HN

ONE I^KS^ATRANS 4 BOO
I—<ONEl

The linear form output and the graphical equivalent, are:

JOHN WANTS A BOOK

TIM00: ((VAL T))

TIM01: ((AFTER TIM00 X))

TIM02: ((AFTER TIM00 X))

((CON ((CON ((ACTOR (ONE 1)<-^(ATRANS)

OBJECT (BOOK1 REF (A)) TO (JOHN1)

FROM (ONEl))TIME (TIM02))

^■C((ACTOR (JOHND^EB^T (JÜY)^F (JOY))

INC (2) TIME (TIM01))))

^>(MLOC VAL (LTM PAST (JOHN1) REF (THE))))

MODE (NIL) TIME (TIM00))

I

#^^MLOC (LTM (JOHN))

ONE^™kATRANS< BOOK

—»f. M:
JOHN

ONE

i—)JOY (X+2)
JO

—7«J U X (X

—<JOY (X

That is, John believes that someone giving (ATRANS) him

a book will cause his joy to increase.

If the ADD_BP request sees OBJ equal to "(MARYl)", then

it produces the following structure for what is wantsd:

-.

127

1 u

1

c
i.

i

IJ

MAR'/^—»PTRANS<-
o Ü f' ; MARY<—-—

JOHN

CD
The linear form output and the graphic equivalent aro:

JOHN WANTS MAR*

TIM00: ((VAL T))

TIM01: ((AFTER TIM00 X))

TIM02: ((AFTER TIM00 X))

((CON ((CON ((ACTOR (MARYl)«--^(PTPANS)

OBJECT (MARY1) TO (JOHN1) FROM (NIL)) TIME {TtK?

^SC((ACTOR (JOHNl)^^T (JOY)^-=^F (JOY))

INC (2) TIME (TIM01))))

^^(MLOC VAL (LTM PART (JOHN) RE F (THE))))

MODE (NIL) TIME (TIM00))

I 1
; -

#^9^MLOC (LTM (JOHN))

JOHN It
MARYfa^PTRANS<

»JOY (X+2)

MARY^^

+ 2) U,

,4 JOHN

a
JOY (X)

That is, John believes that if Mary comes to him his joy

will increase.

In the third and fourth sentences, "John wants to buy

a book" and "John wants Mary to buy a book," the T03 sense

of "to" is used. In the third sentence, this request starts

the building of the subclause with "(JOHNl)" as the SUBJ. In

the fourth sentence, this request starts the building of

the subclause with "(MARYl)" as the SUBJ. In both cases the

same structure for "buy" is built, but in the first case, of

course, John is buying a book and in the second Mary is doing

so. The final result is the following structure where "X" is

"(JOHNl)" or "(MARYl)", depending on the sentence:

128

-> #^MLOC (LTM (JOHN))

X^ATRANS<-2_MONEY^-

>%

ONE|^ ATRANS4 BOOK^
•<

i I

i
- i

JOHN

In boch of these cases, the ADD_2P request that looks, when

the sentence is finished, to see if a conceptualization

describing what is wanted has been built, will find one.

Hence it will not perform the actions necessary to fill a

gap.

129

 V"'M

CHAPTER 8

MULTI-SENTENCE ANALYSIS

8. 1 INTRODUCTION

The last few examples to be given involv the analy-

sir of more than one sentence at a time. These examples

are far from adequately treated, as will be seen. However

they do show how the basic mechanisms that apply to simple

sentences are appropriate for text as well. These examples

touch lightly on some aspects of contextual effects. Cer-

tain contextual effects can be viewed as predictions made

at on" point in a text about what will be seen at a later

point in the text. Compare this with the basic Fcheme of

analysis which is the prediction at one point in a sentence

about what will be seen at a later point in the sentence.

Contextual predictions are -ot just analogously similar to

sentential predictions, but are, with some extension, built

from tha same functional tools. One inadequacy in what is

to be described arises from the fact, that the two sets of

predictions are not handled as one. Another inadequacy is

that sometimes the interaction of requests occurs too late

^n th.j flew of the analysis. This leads to an artificial

form of backup bninq needed, which is done but in an ad hoc

non-generalizable manner. Both these problems are treated

in a more uniform manner through the introduction of an-

other basic mechanism, which is described in Part II.

Simply expressed, the mechanism r.ssociates a request with

the need it is filling. This allows requests to come and

130

go independently and allows requests to easily recognize

other requests. However what shall be described here is

the analyzer system prior to this extension. Despite the

clumsiIles^ of some of the implementation, hopefully it

will be c.1 ear how requests can carry information from the

analysis of one sentence to the next.

The examples to be described are involved with changes

j.n word sense choice. The effects and examples treated are;

1) Contextual lexicons - where certain domains

of concepts have their own jargon associated

wit;i them. The program is affected by jargon

in the text: "John and Mary were racing.

John beat Mary" - whr^re the second sentence

is treated differently by the analyzer when

appearing in isolation.

2) Conceptual predictions - where an expectation

of a certain kind of conceptualization affects

the analysis of a sentence. Two texts where

conceptual predictions are hanaled by the pro-

gram are:

a) "John hated Mary. John gave Mary a sock" ■

where the second sentence is treated dif-

ferently by the analyzer when appearing

in isolation.

b) "John was hunting. John shot a buck" -

where, again, the analysis of the second

sentence is different in isolation.

• •

• i

131

I
I
I 8.2 MODIFICATIONS TO THE ANALYZER

In order to do the above examples, the format of the

request was extended slightly, an extra monitor variable

was added, and several new functions were written. The

format change merely involved the adding of a field to each

request specifying the word or sense that was the source of

that request. The monitor did this automatically. The ex-

|- tra variable was IM_REQS. IM_MEQS is a list of requests

fc like REQUESTS. The distinction is that REQUESTS is re-

— initialized to a starting set of requests at the beginning

•* of each sentence. IM_REQS, however, is unchanged by the

occurrence of sentence boundaries, except of course, inso-

I, far as a request it contains may be triggered by a sentence

boundary.

The new functions are of two sorts. Some are intended

as mechanisms for passing information. Others are for per-
*—-

forming certain manipulations on the basis of this informa-

tion. The variable IM_REQS holds the information passing

functions, while the extra field in the requests is needed

for some of the manipulations.

One of the information passing functions is CONSIDER_IM,

which is like the function CONSIDER. Where CONSIDER checked

the list REQUESTS, CONSIDER_IM checks the list IM_REQS.

Another function is CONDICT. CONDICT is one of a proposed

] set of functions that takes a list of conceptualizations

containing some special forms, and interprets these forms

to provide links that tie these conceptualizations together.

The particular job of CONDICT is to interpret certain special

forms that tie pieces of a conceptual cluster to related

lexical items. The form used is ($$$ (X Y)) where X is a

word, like "boat", and Y is a sense of that word, like BEAT2.

132

1
1
I

This form is not a conceptualization because it does not

relate a concept with a concopt, bu*- rather a word of the

language with a list of programs, i.e. a sense. CONDICT

is the basi function used to implement a conceptual

lexicon. The IM_REQs list, containing requests passed

fiOm sentence to sentence, i" used to implement conceptual

predictions.

A new function that manipulates the flow of analysis

is BACKUP. It calls two functions, REMREQ and UNR^Q, and

relies on information about the analysis saved by LAST_SEEN.

BACKUP redoes the analysis of a sentence from some word on.

In general, where this reanalysis should begin should Le

determined by the type of conflict that occurred. However

in this program it is assumed that analysis should go back

just one word, which is Jene by the function LAST_SEEN.

Undoing the analysis involves several actions. The requests

tnat were added by the no longer desired word sense must

be removed. This is done by REMREQ, using th*» extended

request format to decide which requests should be deleted.

Also, the requests that the previous word sense tr-'^rgered,

end hence have had their FLAGs set to T, need to be re-

stored. Ihis is the job of UNREQ» but UNREQ taKes advan-

tage of the fact that analysis is backing up only one word

and only in examples that have a conflict at the end of the

sentence. The function UNREQ reactivates all the requests

that the word sense might have triggered, whether or not

it actually did. Obviously this could cause problems in

general, but UNREQ was sufficient for the task of the moment,

Another action, which might be necessary, is to erase the

structures built by the previously triggered requests. How-

ever it is sufficient here just to have the reanalysis over-

write what was previously built.

133

—.

I
I
i

There are three pairs of pro and con that I can say

about the abo/e:

1) Con - Backup does not seem to occur for me

tr on the word "sock" in example (2.a) and

I am more interested in avoiding it.

Pro - Some people do hesitate before choosing

the right sense of "sock" and for them
r

backup would seem a reasonable model.
..

2) Con - The functions for doing backup are very

limited In their applicability.

Pro - The functions given, however, indicate

how the various actions involved in back-

ing up could be distributed.

3) Con - Given the intention that requests repre-

sent the predictions made from and about

the recognition of some situation, it

seems wrong to have predictions that mis-

takes will be made.

This is particularly true in the example

(2.a), which, as implemented, seems to

say that a general concept of not liking

someone predicts the need for backup in

later sentences.

Pro - As was mentioned, there has been further

extension done on the analyzer. This

extension has included a generalization of

the idea of request, along with a gener-

alized form of control ever requests. The

general concept of a request includes a

more integrated view of backup. It is

the source of such requests that differs

from the way the implementation was dene

1 here.

134

8.3 EXAMPLES OF TEXT ANALYSIS

Consider, now, the analysis of the multi-sentence text,

"John and Mary were racing. John beat Mary," versus the

isolated sentence "John beat Mary." If the analyzer under-

stands "beat" in the same way in both cases then the multx-

sentence axaraple would require no information to be passed

from the first sentence to the second. However, if the an-

alyzer understands "Johr beet Mary" in isolation as mean-

ing John hit Mary repeatedly, then the analyzer must be

capable of changing in context. Therefore, for demonstra-

tion purposes, the analyzer was put into this second situa-

tion, where "John beat Mary" in isolation was not interpreted

the same as when it followed "John and Mary were racing."

The verb "beat" is assumed to have two senses, BEAT1

and BEÄT2. Both senses are simple, consisting of two re-

quests, one providing the conceptual frame and the other

locking for an OBJ.

BEAT1:

((FEATURE SENSE (QUOTE PP)) (CHOOSE OBJ SENSE) NIL;

(T (REPLACE CONCEDT

(QUOTE ((ACTOR (#SUBJ)^—^(PROPEL)

OBJECT (#OBJ))

TIME (NIL)))) NIL)

BEAT2:

'(FEATURE SENSE (QUOTE PP)) (CHOOSE OBJ SENSE) NIL)

(T (REPLACE CONCEPT

(QUOTE

((CON

((CON ((ACTOR (#SUBJ)^s^(LOC WL (ONE)))

TIME (ONE))

135

1
I
1
i
I
1

I
1
I
I
I
I
I
I
I
I
I

A ((ACTOR (#OBJ)$s=a^(LOC VAL (ONE)))

TIME (ONE))))

A

((CON ((ACTOR UCON CON TIME)

Rl (= CON TIME)))^BB^(<<)))))))

NIL)

The instrument of the conceptualization in BEAT! has

teen removed for simplicity. The conceptual frame in BEAT?

is meant to be suggestive of the idea of one person being

in a location before, in time, another person gets there.

This is not a regular CD construct, nor is it complete

enough to represent the ideas involved, nor should BEAT2

be this specific to th^ concept of winning in a race. How-

ever these objections are irrelevant. The only thing that

is important for our purposes here is the existence of two

distinct senses of "beat".

The analysis of this sentence involves two words besides

"racing" not described before and which shall be treated

only briefly. ne is "and". The requests for "and" are

valid only for a restricted class of sentences. Basically

the request saves the noun phrase following the "and" and

adds a request that waits for the end of the sentence. The

rest of the sentence is analyzed as if only the noun phrase

preceding the "and" had been read. Wh^n the end occurs,

this request attaches to the structure that has been built

a copy of that structure, with the sense of the saved noun

phrase appearing everywhere in that structure that the sense

of the first noun phrase did. So the result of analyzing

"John and Mary were racing" is the same as the result for

"John was racing and Mary was racing." It would have to

be inferred that John and Mary were probably racing against

each other.

136

The "were" in the sentence, the other new word, has

a past tense request of its own and has the sense BEI. Hi:l

hAS a number of requests, which look at the item to come

to see if it is a verb or a noun or an adjective. For ex-

ample, there is a request such that if there is a verb in

the past participle form, then actions are taken treating

the subject of the verß as if it had appeared following the

verb. This is the request that handles passive sentences.

The simplesc request in BEI is the one we need, which says

that if the word is a progressive verb form, i.e. ending

in "ing", then do nothing except remove the other requests

BEI had set up and treat the progressive verb form as the

main verb in the sentence.

"Racing" is not complicated, but it is the word that

introduces the contextual lexicon that affects "beat".

"Racing" has just one request which provides an ad hoc con-

ceptual frame. This conceptual frame request is:

RACE1:

(T (REPLACE CONCEPT

(QUOTE

((ACTOR (*SUBJ)i—>(PTRAN3)

OBJECT (sACTOR) TO (NIL) FROM (NIL))

TIME (NIL) MANNER (FAST)

MODE (NIL)< >(| RACECON))))

NIL)

There is no request looking for an object simply because

the example text only used "race" Intransitively.

"Racing" then is analyzed to the same structure as

"running". However it differs from "running"' because of

the form "($ RACECON)". This points to a cluster

of conceptualizations. RACECON is a Li^p atom whose value

is a list of conceptualizations and special forms. The

137

I
I
I

call on REPLACE in turn calls FIXUP when interpreting a

Lisp form, and FIXUP calls CONDICT when it sees "($ RACECON)"

CONDICT ties the conceptualizations in the list together.

Briefly, one of them says that there is a group of people,

another says that each person wants to do better than any-

one else in the group, and another says that doing better

than someone means getting to some location before that

someone does. Further, within the first conceptualization

there is a oointer to the form "($$$ (RACER RACERl))" which

says that the contextual lexicon entry for a member of this

group is "racer". Within the second conceptualization there

is a pointer to the form "($$$ (BEAT BEA'r2))" which says

that the lexicon entry for doing better is "beat". CON-

DICT makes BEAT2 the CURRENT sense of "beat". Thus, when

the sentence "John and Mary were racing" is finished by the

analyzer, the output is:

((CON ((ACTOR (JOHNDV—^(PTRANS) OBJECT (J0HN1)

TO (NIL) FROM (NIL)) TIME (TIM01) MANNER (FAFT)

MODE (NIL)^—^(NIL))

A ((ACTOR (M.',RY1)^«^ (PTRANS) OBJECT (MARY1)

TO (NILS FROM (NIL)) TIME vTIM01) MANNER (FAST)

MODE (NIL)^—> (NIL))))

r—>D
JOHN*—>PTRANS^2-J0HN ^ -

I MANNER
FAST

, . o D MAR'^—^PTRANS^ MARY
t MANNER

F-VST

L—< D

a
and furthermore the CURRENT sense of "beat" is BEAT2. There-

fore, when the next sentence, "John beat Mary," is analyzed,

the result is the conceptualization of "John finished the

race before Mary":

138

-

((CON ((CON ((ACTOR (JOHN1 j^sa^fLOC VAL (ONE)))

TIME (TIM01))

A ((ACTOR (MARyl)^^(LOC VAL (ONE)))

TIME (TIM02))))

A ((COM ((ACTOR (TIM01) RI (TIM02)))

^ (<<)))))

T.
JOHNlrfLOC (ONE) A MARY^LOC (ONE)

A
T, < T^

However, iiad the sentence "John beat Mary" been an-

alyzed prior tc the encountering of "racing", then the re-

sult of ths analysis would have been the same as for "John

gave Mary a beating," because ehe analyzer assumes the nor-

mal sense for "beat" is BEAT1.

The next multi-sentence text example is "John hated

Mary. John gave Mary a sock." The analyzer it set so

that when analyzing "John gave Mary a sock" in isolation,

the result is a simple ATRAMSing:

((ACTOR (JO:iNl)4erV(ATRANS) TO (MARYi) FROM (JOHN1)

OBJECT (S0CK1 REP (AM TIME (TJM01))

This is "a sock" interpreted as a üimple physical object,

like "a book". However, in this text situation, the de-

sired result is assumed to be that "sock" is an action,

like "beating" in "John gave Mary a beating," and the an-

alyzer output for "John gave Mary a sock" should be:

((ACTOR (JOHN1)

TIME (TIM01))

(PROPEL) OBJECT (MARYI))

139

i.

where we have simplified by leading out the instrumental

case. The problem here is to specify what "John hated

Mary" could do that would have this effect. Unlike a race

or a contes where we can envision an associated jargon,

a contextual lexicon, here it would be very unlikely that

any direct association exists between "hate" and "sock".

The analyzer sets up a corn/eptual prediction when it

sees "hate". This conceptual prediction is a request that

is placed in IM_REQS. The TEST of this request is a pat-

tern match on later constructions in CONCEPT. The pattern

matches any structure about the person who is hating doing

something. The ACTION taken if this pattern is found is

to ask memory if the person who is hating is doing some-

thing bad to the person he hates. If so, nothing happens.

If not, the function BACKUP is called to try a different

sens2 of the last word seen. If a new CONCEPT is built

then this is checked for the same property and so on, till

either an acceptable CONCEPT is found or BACKUP fails to

produce a different value of CONCEPT.

When the analyzer run? on this specific example text,

then the sentence "John hated Mary" is analyzed as:

((ACTOR •J0HN1)^»^{MFEEL) OBJECT (ANGER)

TO (MARYl)) TIME (TIM01) MODE (NIL))

 >MARY
J0HN^-!>MFEELt-2-ANGER «—

This is only an ad hoc representation of "hate". More im-

portant is the following request that now appears in

IM_R£QS:

140

((FITS CONCEPT

(QUOTE ((ACTOR (JOHN1 ^-4 ONEl)))

NIL)

(PROG NIL

(PRINTSKIP (CAT CONCEPT (QUOTE "OK?")))

(COND l(NULL (READ))

(BACKUP)) (T NIL)))

NIL)

The TEST is almost as we described it. The ACTION substi-

tutes a real memory call with a message to the console. When

"John gave Mary a sock" is analyzed, the first message to

the console is:

((ACTOR (JOHN1)*"B^ (ATRANS) TO (MARY1) FROM (JOHN1)

OBJECT (SOCK1 REF (A))) TIME (TIM01)) OK?

We respond with a NIL because ATRANSing Mary a sock will

not cause her to undergo a negative state change. Hence

BACKUP is called and another sense of "sock" is chosen.

This time the choice is SOCK2, which refers to the act of

hitting someone. The message to the console is:

((ACTOR (JCHN1)V—{»(PROPEL) OBJECT (MARY1))

TIME (TIM01)) OK?

Since this would cause a negative state change in Mary, we

reply T. BACKUP is not called again, and the above choice

for CONCEPT is accepted as the final result.

The problem with the way this example is handled is

that it was necessary to construct the whole conceptualiza-

tion before rejecting the sense of "sock" chosen. It would

seem preferable, if not in this case then certainly in others,

to be able to contextually affect requests directly rather

than act-lng after tue requests have produced results. The

141

-

.. two sentence text example, "John was hunting. John shot

a buck," is related to this kind of approach. As with

"sock" in the last example the key element is the ambiguity

of the «ord "buck". We have two meanings of "buck" avail-

able in the dictionaty One is BUCK1 which is an animal.The

other is DOLLARl, i.e. money. The analyzer when presented

with the sentence "John shot a buck" in isolation produces

the output:

((ACTCR (J0HN1)«—j>(ATHANS) OBJECT (DOLLARl RE F (A))

FROM (JOHN!)) TIME (TIM01) MODE (NIL))

The above structure is graphically:

JOHN^^ATRANS ^-DOLLAR «-£-
->□
-<JOHN

That is, Jchn spent a dollar.

This results not because "shot" is assumed to mean

spend. In fact "John shot..." is initially analyzed as:

((ACTOR (JOHNl)^(PROPEL) OBJECT (BULLET)

TO (NIL) FROM (JOHN!)) TIME (TIM01))

SHOOT1, the sense of "shot" involved, has three requests,

and one is capable of overwriting the effects of tne others,

Tne three requests are:

SHOOT1:

(T (REPLACE CONCEPT

(QUOTE ((ACTOR (#SUBJ) .(s^ PROPEL)

OBJECT (BULLET) TO (*OBJ)

FROM (-ACTOR)) TIME (NIL))))

NIL)

142

((FEATURE SENSE (QUOTE ANIMAL))

(CHOOSE OBJ SENSE) NIL)

((FEATURE SENSE (QUOTE MONEY))

(PROG NIL (CHOOSE OBJ SENSE)

(REPLACE CONCEPT

(QUOTE ((ACTOR (#SUBJ)^=^ (ATRANS)

OBJECT (#OBJ) FRC.i UACTOR))

TIME (NIL) MODE (NIL)))))

NIL)

The first request builds the shootinn of bullets frame.

The second says that a noun phrase referring to an animal

should be assumed to be the OBJ. The third says that if a

noun phrase referring to money is seen, then the action

is really not shooting bullets, but rather it is spending

money .

"Buck" is given a CURRENT sense of DOLLAR1 so that the

third requeue is activated when "John shot a buck" is an-

alyzed, hence the PROPELinT of bullets is overwritten to

be the ATRANSing of mone,. The prob lern then is how "John

was h inting" can change tne sense of "buck" from money tc

animal. It is possible that this is a contextual lexicon

effect. However it is also possible to handle it by a con-

ceptual prediction in such a way that, unlike with "hated"

and "sork", only one conceptualization is ever constructed.

That is, the analysis program does not have to build and

reject the conceptualization saying that "John spent a dol-

lar" before it gets the one it wants.

The analysis of "John was hunting" produces two re-

sults. One is the following conceptualization, which is

an oversimplification of the idea of "hunting":

143

, ,

((CON ((ACTOR (JOHNl)4=)(DO)) TIME (TIM01))

^sE ((ACTOR (J0nKl)4«y(?nOPEL) OBJECT (BULLET)

FROM (JOHN1) TO (NIL)) TIME (TIM01))))

Th;, ».bove is graphically:

JOHN4=^DO

o D i—>IZIJ
JOHK^^PROPELV—BULLET^-—J

'—<JOHN

The other resi. : is that the following request is built

cind added to IM_REQS:

((FITS CONCEPT

(QUOTE ((ACTOR (JOHN 1 ^{PROP-L) OBJECT (BULLET))))

Nli.)

(ADDREQ

((NOT (FEATURE OBJ (QUOTE ANIMAL)))

(BACKUP) NIL))

NIL)

This means that when the sentence 'John sh -t a buck"

is analyzed, the following actions occur. "Shot" is inter-

preted, as always, as referring to PROPELing bullets. This

triggers the IM_REQS request and thus a request is built

that objects to choosing an OEJ that is not an animal.

"A buck" is read and initially interpreted as referring to

money. Immedia.ely, the newly added request rejects this

interpretation of a buck", BACKUP is called, and another

sense of "buck" is found, which FEATURE does find to be an

animal. Therefore th-» final result is:

' lACTOR (JOHNl)<a^ (PROPEL) OBJECT (BULLET)

FROM (JOHN1) TO (BUCK1 RFF (A))) TIME (TIM01) MODE (NIL))

144

Graphically this is

JOHN^=^PR0PEI.<—B
D r-?

ULLET^—-|
-^BUCK

JOHN

There are ot course uasatisfactory aspects abou*- this

solation. Certainly the request should not be dependent

on the OBJ of th^ verb, since there may be a verb that

means shooting but uses o preposition to signal the ob-

ject being shot. A more general way of treating both this

and the "hate" text is described in Part II. However, this

example is only meant to show, as are the others, some of

the ways by which contextual effects in text analysis can

be implemented.

145

CHAPTER 9

REVIEW OF THE ANALYZER

The analyzer has been described by means of a number

of examples presented in some detail. The word-oriented

nature of the analyzer makes this kind of description

necessary. Analysis occurs through the execution of pro-

grams, i.e. requests, that originally spring from in-

dividual words. The meaning of a word in this system is

therefore a very dynamic thing, best illustrated in action.

Further, during analysis there will be many of these pro-

grams. Examples are necessary to show how these programs

i/.teract with each other.

With the presentation of these examples, hopefully

several points have been made clearer. For ore, there is

a cl.se relationship between the basic assumptions, which

were listed before the description of the analyzer ^unc-

tions, and the shape of the analysis program, between the

theory and the implementation. For another, the word has

been given a central role in the process of analysis but,

a., the same time, weakened as an isolatable element. Th'ic

is, a word is important for the actions it performs. There

may or may not be a conceptual structure closely associated

with the word. Further, when work is done through words

and not syntactic patterns, there is both a capability for

and a bias towards producing conceptual interpretations

directly. It is not necessary to first produce a syntactic

description, as an intermediate goal, in order to interpret

.1 sentence. Further, conceptual structures can be given

to a deductive memory system. Therefore the intermediate

results, which are conceptual structures, can also be given

to memory. Hence memory can be used during, not just after,

the analysis.

146

Chapter 8 on "Muxci-Sentence Analysis" demonstrated

that the expectation mechanism could be used to implement

certain contextual fffects. But it also demonstrated the

need for a more systematic approach to the manipulation of

expectations. Chapter 8, in other words, provided the mo-

tivation for the work in Part II.

I would like to have spent more time describing how

the analysis of various situations procaeds. It is import-

ant to accept the claim that the expectation mechanism can

handle the analysis of any reasonable sentence. Part II

is based on the assumption that the analysis program, as

given, is essentially correct. The sufficiency of the ex-

pectation mechanism cannoc be proved, of course, but it

can be made believable by applying expectations successfully

to a large number of situations.

The analysis program is not a large one. It has a

vocabulary of about sixty verbs, two dozen nouns, half a

dozen prepositions, and a few adjectives. However the defin-

itions of these words, particularly of the verbs and pre-

positions , are often quite ccrupiex and can handle a number

of dif.erent constructions. Thef. the analysis program, be-

sides tne examples that have already been given, can do the

following:

1) "Is" constructions - The requests associated

with "is" allow the analysis of predicate adjec-

tives ("John is sick"), progressives ("John is

going"), passives ("John was hit") and yes-no

questions ("Is John coming?").

2) "Get" constructions - The vorb "get" -.s like

"give" in the range of types of objects it can

appear with. The analyzer is capable of handling

constructions like "get someone a sock", "get

Fomeone a job", "get a beating", and "get mad".

147

^^^^^^^^^"

I
I
1
I
A

3) Vorb-prepositions - Although there are only

a few prepositions, there are many cases where

the function of a preposition is totally de-

termined by the main verb. Thus there are many

"meanings" possible for these few prepositions.

The analyzer has verb-preposition construc-

tions for "agree-to", "agree-with", "agree-

that", "help-to", "help-with", "remind-to",

"remind-that", "swap-for", "swap-with", and

others,

4) Causation - The analyzer is capable of handling

verbs with implicit Causation such as "kill",

"hurt", "aggravate" and 'bother". It can also

handje an explicit statement of causation, us-

ing the word "because", as in "John went Le-

cause Mary came." Further, the verb "cause"

can be analyzed in sentences like "John caused

Mary to drink the wine," "The beating caused

Mary to be hurt," and "The book caused Mary

to decide." Notice that in the first sentence,

John does some action that affects Mary, whereas

in the last sentence Mary does something

that affects herself,

5) Unannounced clauses - The analyzer can handle

cases where a new clause begins without an

introdictory word like "that" or "which". For

example, the analyser can tre?t "John told

Mary the dog was sick" and "John promised Bill

Rita cculd come,"

6) Miscellaneous - Simple active interrogatives

like "Who is coming?" can be handled.

148

- The construction "is going to", as in

"John is going to go", is recognized as in-

dicating a future time,

- The complex tense relationships that

"has" and its forms can produce have not

been treated, but the analysis program does

handle "have a book", "have a headache", and

"have a job" constructions.

- Simple adjectives in noun phrases are

bandied. The analyzer can do "the green book"

or "a sick man", using the same senses of

"green" and "sick" that are used when these

words appear as predicate adjectives. The

function FEATURE knows ^Sout modifiers. It

can tell that "a green book" is a physical

object by the definition of "book", and that

it is green, by the explicit modifier.

Most of the definitions and programming for these con-

structions was done by Paul Martin, based on the definitions

and analyses that were described in Chapter 7. Very few

conflicts occurred when his new definitions and mine were

combined. An advantage of writing programs for specific

words rather than for syntactic word-classes is this modu-

larity. Independent efforts can be done, extending the an-

alyzer's capabilities, without interferring with each other,

even though programming styles may differ quite a bit.

The time required to analyze sentences with constructions

like the above depended more on the complexity of the con-

ceptual manipulations involved than on the length of the

sentence. For example "John gave Mary a book" was analyzed

more rapidly than "John bought Mary a book." The latter

involves building and attaching a second conceptualization

149

to the buying structure because "Mary" appears where it

does. But the time for analysis was rarely over five seconds

of computer time, when the Lisp program was compiled, even

for complex sentences.

The analyzer therefore is not solely an implementation

of a theory of analysis. It is also a practical approach

to computational language analysis. It seems particularly

useful for those cases wnere the results of the analysis

are quite different from the elements of the input.

In Part II this analyzer is extended. This extension

is not the simple growth that results from more and more

definitions. In fact, no new words are defined in Part II.

Instead, definitions that have been described becomo the

objects of other processes and manipulations. Far from

being replaced by Part II, the analysis program of Part I

becomes valuable in a new way.

150

PART II

GUIDE TO PART II

Part II is less technical than Part I because Part II

has not (at the time of writing) resulted in a progran.

However, it uses ehe devices developed in Part I to express

ideas specifically enough so that programming is not far

away.

In Part II the general topic is the analysis of texts.

It assumes that the way the analyzer handles sentences is

essentially correct. The task then is to extend the analy-

zer in a consistent manner so that texts can be handled

as well. To do this, two things have to be studied until

structures for each can be seen.

One of these things is the nature of a text. What

effects occur during the comprehension of a text that must

be accounted for? This is the topic of Chapter 11. What

general mechanisms produce these effects? ühis is the topic

of Chapter 13. Chapter 13 starts with information stored

in static forms. In particular, it is concerned with what

pictures are present that say where the discourse is going.

Then the chapter continues with a description of the pro-

cess by which this static information comes to actively

affect analysis.

To describe this conversion, we have to know what it is

that is being affected. The second thing which must be

studied, and for which a structure must be found, is the

analyzer. In Part I, the analyzer was expanded to meet

the needs of various examples. There was no predefined con-

cept of what the analyzer should look like, except for the

general one imposed by the goal of modelling human compre-

hension. But once there was enough of the analyzer to work

with, it became both possible and necessary to look for im-

plicit structures.

151

Chapter 12 describes the structure that resulted from

studying the analyzer. The later sections of Chapter 13

show how this structure is used in a theory of text com-

prehension. Basically, a way is described of linking ex-

pectations to each other and to points in static forms.

When everything is tied together in a large structure,

information diffuses easily throughout the system. An im-

portant result of this is that useless forms and expecta-

tions do not accumulate. When something is removed, those

elements that were tied to it and only it are also removed.

Hencev at any point in the analysis, everything present is

tied to and justified by the presence of something else.

Section 12.2 presents a simple flow table, similar to that

given in Part I. Like the previous flow table, this one

should provide a helpful overview for the reader.

Chapter 14 wraps things up. It looks at what has

happened and what is yet to come and maybe what it all

means.

152

CHAPTER 10

INTRODUCTION TO EXTENDED ANALYSIS

Tho term "Extended Analysis" refers to tv»o different

kinds of extension to the previous work. First, there is

the extension of the domain of analysis from isolated sen-

tences to short taxts of several sentences Second, there

is the extension of the analyzer itself to satisfy certain

needs of text analysis and to correct some of the deficien-

cies of the original analyzer. (The terms "text" and "text

analysis", as used in the remainder of this description,

refer only to the kinds of sequences of connected sentences

and the analysis of tham that the examples that will be

given indicate. The terms do not refer to f e body of

work called "text analysis".)

In extending the domain to texts, there must be a the-

ory acout what a text is, about what makes a sequence of

sentences form one unit. When the analysis of single sen-

tences was both developed and described, it was implicitly

assumed that the sequences of words analyzed did indeed form

coherent units In developing an approach to text analy-

sis, it Docame clear that the same assumption must hold,

that the analyzer must assume that each sentence it sees

should, if possible, be tied in with the previous sentences.

A sequence of words is bound into one coherent sentence

by the predictions that the analyzer makoF when it sees

these words. Words are defined in terms of the predictions

that should be made when these words are seen. Word defini-

tions emphasize how a word interacts with other words, rather

than what the word in isolation might mean.

Tfit theory of text analysis ?.l*o stresses binding by

predictions. To assume that a word is appearing in a sen-

153

tence, is to associate with it predictive (hen.-e interactive)

information. To assume that a sentence is appearing in a

text is also to associate with it predictive-interactive

information. For a word this predictive information is in

the defiaition the word has for the analyzer. For a sen-

tence the predictive information is in the context cluster

which the analyzer associates with that sentence. A con-

text cluster is basically the bundle of predictions and

structures, knowledge that can bind a '.ext into a unit.

The cluster has much the same theoretical role in the de-

scriptionof the analysis of the text, as the predictive

word definitions had in the description of the analysis

of sentences.

Besides the addition of the context cluster, the analy-

zer itself is extended. In extending the mechanisms of the

analyzer itself, however, the origxnal scheme of analysis

remains. To the original analyzer have been added several

mechanisms that extend the manipulative power of requests.

One of the crucial directions extension takes is to allow

requests to manipulate easily not only conceptual structures,

as before, but other requests as well. Manipulation in-

volves three actions creation, modification, and deletion.

As far as requests ware concerned, the analysis of single

sentences was concerned primarily with creation, with calling

into play relevant predictions. With text analysis, the

focus shifts to the mechanisms necessary for modifying and

deleting predictions when they become no longer relevant.

To do this requires not only various devices for modifying

and deleting but also a definition of what relevance means.

Because the manipulation of requests implies the cap-

ability of recognizing what various requests do, much of

the developmental work Is on characterizing requests. The

154

I
+

goal is to make it easy for one request to recog.iize another

request. First, of course, it had to be determined exactly

what information about a request was crucial for recognition,

and what was not. As much as possible, I wanted to have

a request be a black box in the eye of the analyzer, recog-

nizable and raanipuxable through a small set of links that

tied one request with another. The alternative to this

would be to give the analyzer the capability of reading and

writing the Lisp programs that the requests were written in.

This would require an analyzer very advanced in the domain

of automatic program writing. Further, it would contradict

the intention of modelling human comprehension, unless I

was postulating that people know how their own thought pro-

cesses are encoded.

There are therefore three things that have to be de-

scribed. One is the context cluster.- the initial source of

the information that is used to organize the analysis of

texts. The second thing to describe is how requests in the

analyzer can be characterised and manipulated. Finally,

we can talk about, how the information from a context clus-

ter, through the manipulation of requests, leads to the

analysis of a text.

Describing what context clusters look like means de-

scribiug the kinds of predictions; and the sources of these

predictions that cause the analyzer to treat a sequence of

senr.Gnces as a coherent text. These predictions alter the

flow of decisions in the analysis of sentences. The altera-

tions are Intended to make the interpretations of the sen-

tences of a text consistent with each other, in the same

way that a verb in a sentence alters the Interpretation of

prepositions 30 that a consistent whole may be formed.

The next two secticns are concerned with thrf kind-j of

alterations that occur when sentences are analyzed in context.

15 5

CHAPTER 11

CONTEXT

11.1 THE WORD "CONTEXT"

One dict.'.onary definition of context is: "the parts

of a discourse or writing which precede or follow, and

are dirpctly connected with, a given passage or word."

(The American Collega Dictionary. Random House). This can

be generalized to "the situation in which a given passage

or word occurs" and thus include the non-linguistic ele-

ments that relate to a passage.

Context in this sense is a descriptive idea. We say

that in different contexts one sente ice can have different

meanings, and that in different contexts there are different

restrictions on the types of sentences that can occur with

them. Context, used this way, is not an explanative con-

cept. By that I mean that the specification ot a context

in which a sentence appears does not include any specifica-

tion of what pieces of information from the context affect

the understanding of that sentence. We say that a sentence

has a certain interpretation in a certain context, but this

doesn't tell us why it has that interpretation in that con-

text. For example:

1) John and I were fishing. He caughi. one small

trout. I caught one too.

21 John and I were very cold and wet that day.

He got a bad cold. I caught one tt,o.

3) John and I decided to stay. Hello.

156

The sentence "I caught one too" means something differ-

ent in the first context than it does in the second. in

(1) 1 take it to say that "I caught a trout also." in

(2) I take it to mean "I caught a cold also." In the third

example the phrase "Hexlo" seems out of place in the con-

text and would probably indicate a break in the monologue.

Notice that these statements do not say why the effects

occur, but only that they do. The word "context" there-

fore commonly refers to the surroundings in which a., utter-

ance appears. Here, however, "context" will refer to the

underlying elements that cause the contextual effects and

restrictions, like the ones given above. A result of study-

ing language comprehension rather than language patterns is

this Fcress on underlying mechanisms.

However, before we can talk about what mechanisms un-

derlie various contextual effects, we need to have a better

idea of what kinds of effects can occur. The next section

presents a number of examples of different kinds of eff-cts.

57

11.2 CONTEXTUAL EFFECTS

I

There is no problem finding examples of contextual ef-

fects. In fact, it is much more difficult to find cases

where such effects do not occur. Few sentences occur iso-

lated from other"sent*nces, and none occur apart from a

non-linguistic environment.

One contextual effect is change of meaning. For ex-

ample :

1) John and Mary were racing. They were afraid

of being beaten.

2) John and Mary were running. They were afraid

of being beaten.

Chapter 8 implies that the meaning for "beat'chosen

by the analyzer was not the same for texts (1) and (2). In

(1) John and Mary were afraid of losing the race, while in

l2) they wer» afrard of being physically struck. It is not

crucial theo*. »tically if someone disagrees with this as-

sumption as long as he believes ther., are cases of mean-

ing change like (1) and (2). Changes of word sense is the

focus of extended analysis, although it is more copcerr.sd

with those that can't be explained by word-associations, as

(1) and (2) might be.

Another contextual effect is change in the signifi-

cance or intent of an utterance. For example:

3) It takes me 20 minutes to bicycle home. Can

you go faster?

4) Driver, I'm in a hurry to get home. Can you

go faster?

Even though the ai.alysis of "Can you go fastex?" should

give the same conceptual structure in both (3) and (4), the

intent of that senfince is different for each Case. In

158

(3) I take iu to intend "Are you capable of going faster

than I do?" In (4) I take it to intend "Please go faster."

For this reason it. is satisfactory to respond with only a

"yes" to (3) but not to (4).

Another contextual effect is anaphoric reference. For

example:

5) John gave Bill a book. He returned it later

that day.

The referents for "he" and "it" i.i the second sentence

of (5) are presumably Bill and the book respectively.

Related to this is the use of the definite article "the"

versus the indefinite "a". For example:

6) John ..ave Bill a book. The ho^k was War and

Peace.

?) John gave Bilx a book. Th^ spine was broken.

In (6) and (7) "a" is used in the first sentence to

introduce the book. In (6) "the" is used in the second to

refer to it. In (7) "the" is used with the "spine" to in-

dicate t'r.*ft the spine of the book of the previous sentence

is meant.

Ell ysis in utterances involves another contextual ef-

fect. A sentence can have a gap that should be filled with

pieces of the preceding context. For example:

8) Whose house was on fire?--John's.

9) That house is on fire.--John's?

10) Did George say what kind of ice cream Mary

1 ikes?--George thinks vanilla.

Example (8) is a common form of ellipsis following a

question that means "Tell me an X such that Y." The reply

can be just a specification of the X without repeating the

Y. Example (9) is an olliptical question given in response

tj a statement. Example (10) is one used by genarative

159 1

semanticists to argue against the traditional transforma-

tional view that gramraaticality can be considered out of

context.

There are obviously a wide variety of contextual effects,

It is doubtful that any one simple mechanism can account for

them all. Sora of them are syntactic effects and some are

conceptual. Examples of syntactic effects aro the ellip-

tical answers of (8) and (10), where surface structure is

abbreviated by assuming the repetition of part of the struc-

ture of the question. Conceptual effects occur in (1) and

(2) where the meanings of words change. We shall be

concerned here with conceptual effects.

Furthermore, there is a basic contextual effect that

motivates the rest. I am referring to the fact that the

sentences in a text do not disappear, like the Cheshire cat,

leaving only a smile to affect later analyses. Rather,

in comprehending a te:"t a single structure is built, a kind

of super-sentence, to which each new sentence is added as

it is understood. Part of the intuitive notion of under-

standing a sentence is this ability to see how the sentence

relates to what Las gone before and what is to come.

We will be concerned with contextual effects arising

from information that is associated with the elements that

appear in tne text. This information is organized in what

is called a context cluster, and the general nature of

such clusters is the topic of the next section.

160

11.3 THE CONTEXT CLUSTER

The basic mec ,nir;m csed by the analyzer for handling

context is the context cluster. A concext cluster is a

coherent group of interrelated facts and expectations ori-

ented about a common theme. Theme is the unifying element

(or elements) of a context cluster. However, outside of

using words to label them, a particular theme probably can

be steictly defined only circularly in rerms of the concepts

that <=.re organized about it. An example of a theme is a

"contest", which is the unifying element for concepts in-

volving a group of people, each of whom is trying to do

better on some fairly well-defined scale than anyone else

in the group. "Contest" appears nowhere in this set of

concepts but is instead a label for the theme of this clus-

ter. These conceptualizations that express the theme of

the cluster form the core of t'.e cluster. While providing

the 'leaning" of a cluster, however, this core is a passive

data structure. Hence it is not enough for dealing with

effects upon a process like language analysis.

Associated vith the core, and part of the total context

cluster, are specifications of actions relevant co the con-

text. For our purposes only tho.^e actions related to word

meanings in particular and language processing in general will

be important, but it is also in this area that we might

place the response that a person has to being in a ra^e,

.e. instructions on how to run fist, and rules for derid-

ing when th3 goal is no longer worth the effort.

For example, ^hc meanings that are -hosen for words

like oeat" , "win", and 'cheat'' are affected oy the con-

text cluster cf a "contest" when it is active. A context

cluster has actions that change uhe meanings of words to

make them more relevant to the theme of the cluster. In

161

I
I
I
I
I
I

terms of a network model of memory the effect involved

could be seen as lighting up or activating nodes in a graph.

This kind of effect was implemented and described in

section 8.1. Every word has two pointers to possible senses

of that word. One, called C.RRENT, points to at most one

element. It is a sense of the word that has been specifically

predicted by the preceding context. The other pointer,

called COMMON points to a list of senses for that word.

These are senses that are usually recoverable after a mo-

ment's thought about the word out of context. When no sense

has been predicted for CURRENT, an arbitrary element from

this list iö picked. It is not necessary, by the way,

that CURRENT point to a sense that appears in the COMMON

list. And it should be obvious that the list of common

senses is a convenience and net a model of the organiza-

tion or words in memory. The ordering of that list is also

not of imuediate concern. What is important is the pres-

ence of one sense predicted as being the current one, the

one that should be considered before others.

Another action specification that can appear in a

cluster is a request. That is, as part of the knowledge in

a cluster, there can be a datum that says "if you see an

X then do Y." This can be viewed as a generalization of

the contextual lexicon which says "if you see the word X,

then assume it means Y. "

In the programmed implementation of text analysis de-

scribt-d in section 8.1, requests attached to a context clus-

ter were responsible for the conceptual predictions that

the cluster led to. In extended analysis conceptual pre-

dictions are made by the monitor program based on the con-

ceptualizations in the static core. However, there are

162

'till certain requests that belong to the action part of

a cluster. These are called traps and are described in

section 12.4. Monitor-generated predictions are of more

interest to us here than the trap-generated ones. This is

because the monitor makes predictions in order to achieve

some goal. That is, there is a motivation for a monitor

prediction. But a trap prediction says that certain situa-

tions happen to be handled in a particular way when this

context cluster is involveJ. A trap prediction is not mo-

tivated by some overall purpose. For example, the monitor

may predict that a human being will be referred to by some

future noun pnrase because the conceptualization being built

needs a human. A trap prediction might say that "a rat"

refers to a human in a given context, but this prediction

is not made in response to any particular need for a human.

The context cluster is a device whose function is to

provide ehe analyzer with world knowledge in usefully-sized

chunks. Clusters are an hypothesis about one aspect of

the cognitive process of finding relevant information. The

hypothesis is that world knowledge is o.ganized, in the

long term memory, into clusters. When part of a cluster is

perceived in some situatioi, then all of the information

in that cluster is assumed to be relevant to understanding

the situation. That is, this information is used to predict

what will cone next, and how everything ties together. A

word usage that is peculiar to a cluster, or some concept

that is central to a cluster, are reasons for activating

that cluster.

The context cluster is not one of the main topics ol

this thesis. It is necessary to develop some idea of hew

world knowledge is presented to the analysis processes, bot

163

of more concern here is how that information is then used.

For this reason only a sketch of context clusters is given

and many major issues are left untreated.

For example, it seems reasonable that context clusters

are highly organized internally. For our purposes the only

organization is that of the story-pattern, where conceptu-

alizations are arranged in narrative sequences. Presumably

however these story-patterns themselves appear in larger

structures, with some patterns serving as subparts of others.

Another issue is how to recognize when a cluster should

be activated and wher de-activated. For our purposes, the

use of associative links, from word senses and concepts to

clusters, is sufficient for the activation of relevant clus-

ters. And just as it was not necessary to worry about re-

moving requests when only single sentences were being an-

anlyzed, sc too it is not necessary to remove context clusters

when only short texts are being considered. However both

of the processes, activation and de-activation are clearly

important issues in the area of general cognitive mechanisms.

Another issue is how many context clusters there are,

and, related to this, how fchey are. This, of course, is

something that only experience will tell. The answers de-

pend in part on what internal structures clusters are assumed

to have, ana on what, if any, relationships exist between

clusters.

In summary, the context cluster is part of a theory

of memory organization. As such it is not the main focus

of this study of language analysis prccesscs. Our interest

here on processes leaves us less time to spend on data organi-

zation. Hence the context cluster as a mechanism is developed

just enough to allow the description of extended analysis

to continue.

164

In the section 13.2 "Contexts and Stories" more will

be said about the conceptualizations that appear in the core

of a context cluster. Also, this section beyins the de-

scription of how these passive structures are converted to

active language analysis effects. First, however, the

mechanisms which extend the analyzer and which are used in

this conversion must be described.

16'

CHAPTER 12

EXTENDED ANALYSIS MECHANISMS

12.1 OVERVIEW OF EXTENDED ANALYSIS

Extended Analysis applies to the analysis of texts,

as opposed to sentences. It starts with the prediction of

conceptual patterns caused by the creation of some initial

conceptualization during analysis. The prediction is done

with the mechanism of a story-pattern. Story-patterns are

sequences of conceptualizations stored in memory. They

are part of a person's world knowledge. The recognition of

one element in a sequence leads to the prediction ot adja-

cent elements in the sequence.

Story-patterns appear in context clusters. A context

cluster consists of related conceptualizations, a contextual

lexicon which is a jargon associated with the topic matter

of that cluster, and various instructions about what actions

to do if certain situations relevant to that cluster are

3ncountered. Subsets of the conceptualizations in a cluster

form story patterns.

Conceptual patterns predicted from story patterns are

compared against new conceptualizations as they are built

during the analysis. When a conceptual pattern partially

matches a conceptualization being built, it is predicted

that the remaining sub-patterns to be filled in the conceptu-

alization will match the corresponding ones in the pattern.

The real task, however, is to convert these predictions

of conceptualizations into ones about language constructions,

The mechanism for doing this is the cha i n. At any point in

166

ii iiiHlTT^ ^MMUtel

the analysis of a sentence, there is a set oT requests wait-

ing to be triggered. Each of these requests apecifies a

situation and an ection which will be executed if that

situation becomes true. Some situations depend directly

upon the appearance of some word or word sense. Others,

however, become true only after one or more other requests

are triggered first. That is, the situation of one request

depends on the action of a second one. The situation of

the second one may in turn depend on the action of a t:hird,

and so on. This string of dependencies, from situation to

action and back, is called a chain. Eventually, during

the analysis, every request thet could be triggered must

belong to a chain ending in a drfpendency on a word or word

sense situation. Otherwise nc language event could ever

trigger that request.

The analyzer starts therefore with predictions of con-

ceptual patterns or sub-patterns. These lead to preferences

for any requests whose execution produce those patterns.

When a request is preferred the situation that triggers that

request is preferred. But a situation may depend on the ac-

tions of other requests. Therefore these requests are them-

selves preferred. In other words, the initial conceptual

prediction leads to a preference traveling down the chain

of dependencies that exist between requests. At each stage

those requests are preferred that would trigger the request

already known to oe preferred. Ultimately preferences tra-

vel to the level of word and word sense situations. Word

sense preferences are the basis of the kinds of contextual

effects that extended analysis deals with.

For example, suppose a prediction of the following

conceptualization has been made:

a
«JOHN

JOHN* • ATRANS*
R n*l

167

Then suppose the sentence "John gave Mary a sock" is an-

alyzed. When "gave" is encountered several requests are

added to the set of those waiting to be triggered. One of

these says that if a noun phrase referring to a physical

object is found, then an ATRANS conceptual pattern will bo

built. Because this pattern is the preferred one, this

request is preferred. Therefore the situation that would

trigger this lequest is preferred. The situation that

triggers this request is given by the TEST portion of the re-

quest. Therefore there is a preference for a noun phrase re-

ferring to a physical object. This preference is ac the language

level. This preference means that when a noun phrase is built,

while this preference is in effect, if the main noun can

refer to a physical object, then that sensa of the noun

will he chosen. Thus, in "John gave Mary a sock," "a sock"

can and hence will be interpreted as an "item of footwear".

This causes the ATRANS building request to be triggered and

the initial conceptual prediction t ^ he satisfied.

Central, therefore, to extended analysis is the ability

to find these chains of dependencies. This is accomplished

by isolating and explicitly specifying two pieces of in-

formation for each request. One is called the need of a

request, and the other is called the focus.

Both the need and the focus of a request are given by

a role, i.e. some position in a structure, conceptual or

linguistic. Every request looks at the substructure in some

position in a structure, and, if the request is triggered,

puts a new substructure in some position in a structure.

The particular need that a request has is that role which

"he execution of the request causes to be filled. The fc-

cu. of a request is that role which the reiuest looks at.

It is possible that a request may depend on a conjunction

168

-rr ^ J

of situations, in which case the focus may be a list of

roles.

Needs and foci are UE"*d in the conversion of prefer-

ence Irora the concept level to the word level. The need

gives information about the action portion of a request.

The focus gives information about the test portion of a re-

quest. Together these two provide the information needed

to find the chains of request dependencies.

The key rule is this: a request depends on those

requests whose need equals its own focus. The focus ot a

request is that role upon whose value the triggering of

the request depends. Any other request with a need equal

to that focus can change the value of that role,by the

definition of need. Henct this other request can affect

the triggering of the first request. Therefore the first

request depends upon the other.

Fo. example, suppose there is a request whose action

is to give a value to CONCEPT. That means the need for this

request is CONCEPT. Suppose further that this request is

triggered when OBJ has a certain feature. That means the

focus of this request is OBJ. Hence this request depends

on each request that gives a value to OBJ, i.e. whose need

is OBJ. For most verbs, requests filling OBJ depend on

some feature of SENSE. That means that the focus for such

a request is SENSE. So we now have chains of dependency

that go from the CONCEPT request to each OBJ request, and

from each of those to SENSE, i.e. the language level.

Neea and focus have independent justification for their

existence, beyond their use ir chaining. in particular a

need specifies the purpose of a request, and when that pur-

pose is no longer viable the request can be removed. A

focus specifies what a request is affected by, and only when

169

I
I the focus .hanges in value is it necessary to see it the

test of the request has become true.

The need mechanism is used to regulate what requests

are active at a given point in an analysis. This regula-

tion is based or. the gaps that exist in those structures

that the analyzer is buildir [. The absence ot information

in some structure can be taken care of only by those re-

quests that affect the value of that role. As long as the

gap remains, these requests are kept waiting, for the pur-

pose of filling it. And as soon as that gap is filled, the

reason for keeping these requests disappears and so, there-

fore, do the requests, even though the requests may never

have been triggered. The need of a request is used, therefore,

to link a request with the gap in a structure that is the mc-

tivation for retaining that request. The next section gives

an example of how this works.

Tho focus does not have so drastic an effect but it

does allow the monitor to handle the testing of requests in

a more efficient manner. When a role i§ given some value

during analysis, it is not necessary to check the entire

set of requests to see whicn ones have been activated. In-

stead, only those requests whose focus equals the role which

was just given a value need to be considered, because only

these requests are affected by that role. Further, since

executing a request affects only the role specified by the

need of that request, only those requests whose focus equals

the i.eed of a trigger«»ri request need to be looked at p-.xt.

In v^ther words, the checking and execution of requests pro-

ceeds up the chain of dependencies down which preferences

were passed.

Exactly how the request chains are formed, and how pre-

ferences are passed along them, as well as details about the

nature of the need and focus of a request form the content of

the discussion of extended analysis that follows.

170

12.2 A FLOW TABLE FOR EXTENDED ANALYSIS

As a guide to the reader, this section presents a table

of the flow of operations in extended analysis. The table

is similar to the one given in section 2.4 ', "Overviev. of

the Analysis Process"), but several nctational changes were

required. Several new columns were added and these i.ec-

pssitated the use of letters and numbers to refe-u to pre-

dictions and requests. What these symbols stand for is

explained in the comments after the table.

The new columns are "Predictions Active" and "Needs

Active". The predictions that are in effect at each step

in the analysis flow are listed under "Predictions Active".

Listed under "Needs Active" are the gaps waiting to be filled

at each step in the analysis, followed by the numbers iden-

tifying the requests that have been suggested to fill this

need. Also listed here are trap-., i.e. requests not di-

rectly attached to any particular need. Traps will be dis-

cussed in section 12.4.

The text analyzed in the tab.'e is "John hated Mary.
Tohn gave Vary a sock." Only the second sentence is traced

because the conceptual predictions A and S are made after

the analysis of the first sentence.

The definition of "give" is modified in a minor way to

demoi.strate the need mechanism better. Rather than having

a request that changes the sense of "to" to T01, there is

instead a request that looks for "to" and performs the

same actions that TGI would.

171

STEP WOSD PREDICTIONS NEEDS REQUESTS ACTION?

READ ACTIVE ACTIVE TRIGGERED TAKEN

0 none A.B SUBJ-1
CONCEPT-

none none

i John A,B SUBJ-1

CONCEPT-

) Choose SUBJ
Lo be John
Remove need
for SUBJ

£ gave A,F CONCEPT-
2,3

RECIP-
4,5

none Remove B
Add C based
on A
Add D has
on C

3 Mary A,C,b

i

CONCEPT-
2,3

RECIP-
4,5

4 Choose RECIP
Remove need
for RECIP

4 a , A.C,D
i

iCONCEPT-
' 2,3 I Set aside

i

■
trap I needs a n d ?" h e

predi ctions
A and c
Add trap 11

5
1
sock D trap II none Choose the

act:on sen^e
of "sock"

6 period | D trap il

I

II Build NP "a
sock"
Reset needs
and p r e d i c t i c n ;:

Remove D

7 none A,C CONCEPT-
2,3

3 Build CONCEPT
to be John
hit - y
Reno C

8 none A none none Remove A

i 1
Comments :

Predict ions: A-predict CONCEPT is John will hurt Mary
B-predict CONCEPT is Mary had hurt J hr
C-predict request 3 will be used
D-predict a NP will refer to an ^vent

172

Requests:

Traps

1-if there is an NP, choose SUBJ to be
the NP

2-if an NP is a POBJ build CONCEPT to
be giving the NP

3-if an NP is an event, build CONCEPT to

be that event
4-if an ÜP is human, choose REC1P to be

the NP
5-if there is a "to", choose RECIP to be

the NP following

1-if true tnen start buildinc an NP
Il-if WORD ends NP, then build NP and re-

set everything

Traps will be discussed in section 12.4. Basically

they are requests generated to start new structures rathei

tban fill the needs caused by an existing structure.

In Step 0 we see the initial state of the analysis.

There are two needs, one fo»" SUBJ and ore for CONCEPT. A

suggestion r.as been made on how fi fill SUBJ, but none ex-

ist for CONCEPT.

Also there are two predictions about the future value

of CONCEPT. Prediction A says that CONCEPT will be about

John hurting Mary. Predvction B says that CONCEPT will be

about hiry having hurt John. These two predictions are made

cr. the basis of the analysis of "John hated Mary." The un-

do-standing of this sentence causes two predictions to be

mode in order to f"ll in two different gaps in a larger

structure. The larger structure, to which the conceptuali-

sation underlying "Jolm hated Mary" belongs, is a story-

pattern about how people behave. One gap in this pattc""

is a reason for why John hates Mary. B predicts that t is

gap will be filled. The other gap in the pattern is what

followü fro ! John hating Mary. A predict.', that thir. gap

will be filled.

In Step i nothing happens that didn't happen in the

origincl analyzer. "John" is chosen as the SUBJ and so

IT J

the request for SUBJ disappears. The reas n this request

disappears is slightly different, though. In the original

analyzer it was removed because it had been triggered.

Here it is removed because there is no longer a need for a

SUBJ filling action.

In Step 2 the verb "gave" is associated with two sugges-

tions for filling CONCEPT. These are added to the REQUESTS

list. Also a need for RETIP is added, pJus two suggestions

on how to fill it. Further, because "John gave" means that

any value of CONCEPT to be built will have John as the actor,

prediction B can no longer apply and it is removed. Pre-

diction A is still possible if request 3 is executed. So

the monitoi makes prediction C which prefers request 3.

In order for request 3 to be executed, a NP must occur

referring tc an event. Therefore the monitor makes pre-

diction D, which prefers a NP referring to an event.

In Step 3 the ^ECIP need is filled uy request 4. Note

that this means that both request 4 and request 5 are re-

moved, even though 5 is never triggered.

In Step 4 a trap is encountered. This means that 'a"

does not itself fill any needs, but rather starts some

separate actions going. In this case the building or" a

noun phrase is begun. '.verything is set aside except pre-

diction D. Prediction D is kept because it applies to noun

phrases.

In Step 5 prediction D causes the hitting sense of

"sock" to be chosen.

In Step 6 the trap that completes the noun phrase is

triggered and 'a sock" is built. Prediction D is removed

because it has been used successfully on this noun phrase.

The res^ of ♦•'e predicticns and needs are restored.

In Step . request 3 is activated, thanks to the suc-

174

-■-—

cess of pradiction D in picking a sense for "sock". This

fills the need for CONCEPT so both requests 2 and 3 are

removed. Also prediction C is satisfied and removed.

In Step 8 prediction A is satisfied by the final value

of CONCEPT and so it is removed. The importance of this

step is that if another sentence were to follow, prediction

B could still be tried, but not prediction A.

We have of course left out numerous details in this

chart. The building of the structure for CONCEPT involves

the use of needs and suggestions, none of which were listta

abcve. The basic flow oZ analysis however is as above. There

are two major changes from the flow given before in section

2.4. One is the use of needs to control the set of requests

active. The other is the maintaining of a set of predic-

tions that affects which requests are executed.

The way , e*»is, predictions, and requests interact

should be kept in mind as each of the elements is describee'.

Although each element can be justified separately, of

greater interett is the fact that they work together so

closely in the total process of comprehension.

17'

12.3 NEEDS AND EXPECTATIONS

A bosic concept to be added to the analyzer is c^llod

the need. Every expectation is associated with some need.

When the action associated with an expectation ic per-

formed, the need disappears. At the same time, when a

need disappears, all the expectations (and their associated

actions) associated with that need desappear as well. A

need, in other words, is the reason for the existence of

an expectation. The fact that an expectation causes it-

self to disappear once the situation it p^redictPd is en-

countered is a special case of why expectations disappear

in general. What is important about the concept of a need

is the fact that triggering an expectation is no longer

the only way in which an expectation might _ie removed.

As an example of what is meant by a .seed, consider

the following conceptual structure:

JOHN4-=^ATRANS< BOO -MT I ^ T -UOHN

The "*" marks a gap in the structure, a place where there

is a need for information. The above structure is created

during the analysis o£ the sentence "John gave a book to

Mary" after the phrase "a book" has been comprehended. The

need for a recipient has two requests associated with it.

One is on the list of requests for "give":

((FEATURE SENSE (2U0TE HUMAN))

(CHOOSE RECIP SENSE) NIL)

The other request associated witu this need is on the re-

quest list for the current sense of "to":

(T (CHOOSE RECIP SENSE) NIL)

So fa nothing has changed from the description of the

1 7 6

analysis given before. The same structure has been built

and the same requests are active. When the phrase "to Mary"

is comprehended, however, something new happens. The re-

quest for "to" fills the gap in the conceptual recipient

case. The request for "to", as before, thereby disappears

(in the sense that its TEST will not be looked at again).

But now the request from :'give", the one with the TEST

" (FEATURE SENSE (QUOTE HUMAN))" also disappears, because

its need is fulfilled. Previously this request would still

be present. In the sentence "John gave a book to Mary"

this is not harmful because the sentence ends immediate 1 •/,

and ail the requests disappear. however, there are cases

where the ability to remove expectations when they are no

longer necessary is important. The texts discussed in

section 8.1 are examples of this, and they shall be discussed

again later.

The need for a concept to fill a gap is one of several

types of needs. Some of the sources of needs are:

1) A word construction needs a word, with a par-

ticular feature, to fill a gaps

2) A conceptual frameneeds a -oncept, with a par-

ticular feature, to fill a gap;

3) A sequence of conceptualizations needs ». con-

ceptualization, with a particular feature, to

fill a gap.

Section 12.4 ("Internal versus External Needs") will expand

this list of sources.

To incorporate this new mechanism, the structure of a

request in the analyzer is modified. No longer does the

variable REQUESTS refer to a simple list. Instead, it is

a list of lists. Each of these lists is associated with

177

one need. Tnese lists specify the requests that are rele-

vant to that need. This has a two-fold effect on the an-

alysis:

1) Requests come and go in groups, according to

the needs they are relevant to. Henco it is

possible for a request to disappear without

being activated}

2) Requests are separated and classified accord-

ing to the needs they satisfy. This allows

some requests to recognize others and thereby

increases the manipulability of requests.

.78

12. A INTERNAL VERSt'S EXTERNAL NEEDS

When the analyzer was being described, it was noted

that words within noun phrases w^re not handled as they were

in the rest of the sentences. Normally the monitor read

in <? word, checked the request list, loaded the requests

that nade up the sense of that word, and finally rechecked

the request list. Within a noun phrase, however, the re-

quests were not loaded from the word sense. A noun phrase

was built using only the passive features associated with

the senses of the words involved. To do this, noun phrase

introducers had a request that changed the value of ACTIVE

and tnis changed the way the monitor program ran. It was

not possible to get the necessary effect solely with re-

quests.

There were cwo disadvantages to this solution. One

was that it was ad hoc and unaesthetic. The other was that

there was a failure to keep all the analyzer's knowledge

about language in the dictionary. The information about

how noun phrases were built was hidden within the monitor

control structure. One j us ti f iceition for the request formal-

ism was that it allowed almost all that the programmer in-

tended to say about analysis to be written in a uniform

and highly visible way.

With the concept of a need, a motivation for the way in

which noun phrases are handled can be given. Central to

the explanaiion is tho distinction between internally gen-

erated needs and externally generated ones. By an internally

generated need, I mean one that is generated to fill a gap.

An example of an internally generated need is one generated

by a gap in the TO position of an ATRANS structure. Extern-

17y

ally generated needs are those generated in response to

the discovery, by the analyzer, of ?ome thing in tho input.

An example of a.", externally generated need is oni.- that calls

a backup routine when the features of an OBJ of a verb con-

tradict what that /erb requires.

Tne needs listed in section 12.3 ("Needs and Expecta-

tions"), are all internally generated needs. Some struc-

ture, either of concepts or of words, in order to be com-

pleted, requires more information, and this requirement

is an internally generated need. Consider, however, the

sentence (suggested to me by J. P. Paillet), "John drinks

his coffee cold." There is nothing in either the syntactic

structure built from "John drinks his coffee" nor the con-

ceptual structure that is the interpretation of "John drinks

his coffee" that requires the information provided by "cold",

Ihe adjective is not expected, and there is no internally

generated need it fulfills. Hence there is no request ac-

tivated by tho discovery of "cold". There is, however, an

overall desire to understand the input, and hence there is

a need to tie this word in with the rest of the sentence.

The failure to trigger requests, in other words, leads to

a need to use this input that no one wanted. At this point

the analyzer looks to a list of suggestions that it has

that are concerned with externally generated needs. This

list <~ f suggestions is part of the analyzer's general know-

ledge about language processes, tied not to structures,

but rather to the need for structures. These background

suggestions are called ti. aps.

"Cold" i... not the only word in the above example that

is not prepared for by the requests of the analyzer as it

stands. Both "drinks" and "his" are also unlocked for.

That is, no requests are triggered when these words are en-

180

countered. Hence a need arises to use each one. This nood

to use a word is taken care of by loading the requests of

the sense associated with the word. These requests provide

the action necessary for making use of the words involved.

Thus the requests for "drinks" provide the basic information

for connecti' J "drinks" to the main clause. The requests

for "his" provide the information that "his" is starting

a noun phrase. In both cares the requests were loaded be-

cause of a need to make use of the words seen. One of the

background suggestions therefore says that the sense of

an unexpected input word may provide the actions necessary

for tying this input to the rest of the sentence.

In contrast to "drinks", "his" and "cold", the two

words "John" and "coffee" are already taken care of by in-

ternally generated needs. "John" is looked for by the ini-

tial SUBJ request. "Coffee" is looked for by the noun re-

quest generated by the noun phrase structure begun by the

requests associated with "his". Because "John" and "cof-

fee" have uses already prepared for them, the monitor does

not need to load any requests they night have.

This, then, is why the analyzer treats words within a

noun phrase in a different fashion from those outside a

noun phrase. Words outside a noun phrase are external e-

vents and something (perhaps the words themselves) must pro-

vide the information necessary for using these words. Words

within a noun phrase have rolas already prepared for them,

and thus no needs to incorporate these words are generated.

181

12.5 TRAPS VERSUS NEEDS

The term trap is used for those routines called by an

unexpected event. Examples of traps are the routines de-

scribed in the last section, that try to find a use for a

word that is encountered which satisfies no expectations.

Backup routines, called when a contradiction is encountered,

are also traps.

Traps can be loosely classified as routines that start

with pieces and attempt to make a whole from them. The

routines associated with needs, on the other hand, start

with an incomplete whole and attempt to find pieces which

can be used to complete it.

Needs have the property that it is easy to regulate

their coming and going. Given a particular structurp, and

a set of syntactic rules for such structures, it can be

determined v>hat, if any, gaps exist. When a gap is found,

a need to fill that gap is generated and when the gap is

filled, the need disappears. For this reason, needs are

helpful in controlling what routines or requests are active

at any one t i me.

'Jr. fortunately, traps do not begin with well-define.1

struc'-ures but with smaller elements, for which a structure

must be found. HJW then shou]J traps be regulated?

One possibility is that they shouldn't be, that the set

of trapn should be the same at all times. Thin has several

disadvantages, however. One is that it means that some

traps will probably be irrelevant but active in some situa-

tions. That is, there may be a routine for handling an

unexpected event that succeeds in some cases but could

not possibly succeed in others. With this solution the

programmer cannot use information about the current si.tua-

102

a-mt

tion to regulate v/hat traps should be activated. Further,

this soiution leads to a fairly restricted set of traps,

tc routines for handling fairly general problems. These

are traps concerned with the language itself, such as the

fact that an adjective can occur free in "John drinks his

coffee cold." Hence, traps are not readily available to

the programmer for dealing with specific contexts. For

example, when listening to commentary on a baseball game,

there is a trap for sentences like "Ball two" that im-

mediately knows it must tie this in with a structure of

the state of the game, not with the texc of the commentary,

which may be about the home life of the catcher.

Another possibility, therefore, is to associate traps

with the recognition of particular situations. In other

words, some traps are part of a context cluster, as des-

cribed in section 11,3 ("The Context Cluster"). Other

traps might be associated with situations like "currently

in a noun phrase" oir "currently in a clause" that describe

the syntactic state of the analyses. Traps, therefore, wculd

come and go along with the needs associated with these con-

texts and situations. The difference between traps and

needs would remain, however. A need routine is attempting

to fill out a structure, but a trap routine is either build-

ing a new one or modifying an existing one. Further, a need

can disappear while the cluster that generated it it. still

present. *. rap, however, remains until the cluster is re-

moved .

Howevei, the focus of study here will be needs, hence ^he

first assumption about traps, that the se^ of them is constant,

will be made. O.^ly enough traps to allow a description of

analysis with needs •• i 11 be uried, and a more det led study

of them will not be made here.

183

12.6 THE FOCUS OF A TEST

The need is the crucial extension to the request format.

It isolates that aspect of the action of a request that al-

lows the analyzer to decide whether the request should con-

tinue to exist as is, or should be modified or deleted.

However, the action is only one of the two parts a

request specifies. The other part is the test. It turns

out that it is also necessary to isolate for the analyzer

a piece of information about the test as well. Suppose

the analyzer has decided that it would prefer a certain re-

quest to be executed. It found this request by having a

preference about how some role should be filled and look-

ing at those requests whose action affected this role. The

need of a request specified what role its action affectod.

Knowing that it would like this request, to be executed, the

monitor then wants to know what situation would cause the

request to be triggered. The triggering situation is speci-

fied by the test of the request. Hence if the monitor can

tell what role the test predicate looks at, taon the moni-

tor can shift its focus to those requests that fill that

role.

For example, suppose tho monitor would prefer that the

value of CONCE: r be set to an ATRANS action. Looking at

the requests for the need CONCEPT, it finds one whose action

creates an ATRANS structure. Suppose the test of this re-

quest says that the OBJ, of tne verb of the sentence being

analyzed, must be some kind of money. Knowing that the

predicate is about OBJ, the monitor can then go to those

requests that fill OBJ and see if there is one that creates

a filler that is a kind of money. If such a request exists,

it then prefers this request to be executed. Now the mon-

184

itor is concerned with what, triggers this request and the

cycle lepeats. In what ways _his chain can end will be

described later.

The information that needs to be extracted from the test

portion of a request, called its focus, is the role (or

perhaps the list of roles if the test is a conjunction of

predicates) which the test predicate depends on. For a

test like "(FEATURE (CHOICE SUBJ) (QUOTE HUMAN))", the

focus is SUBJ, because it is the value of SUBJ which deter-

mines whether the test is true or not.

It is net necessary to classify requests by the foci, as

we classified them by their needs. This is because a re-

quest is first accessed for manipulation through its need.

Having the request n.ay lead to using its focus to specify

the need of the next request to be looked at. There is a

situation where collecting all requests with a certain focus

would oe useful. A SUBJ is filled, for example, and only

those requests with SUBJ as their focus need to be tested

to see if their predicates have become true. One could

use classification by focus ther to avoid evaluating those

predicates that have nothing to do with SUBJ. This, how-

ever, is only a useful side-effect of specifying foci of

tv.sts. The fact that chains of requests can be formed with

them is of more importance.

The next section grves the formal structure used üor

specifying needs, suggestions, tcaps and foci.

18 5

T

••

i.

]2.7 FORMS FOR NEEDS AND REQUESTS

Having spent some time discussing some of the proper-

ties of needs, we can now see how requests look that include

this information.

The list of requests attached to a rford and the list

REQUESTS, which is kept by the monitor, have an expanded

form. Formerly both had the structure (R, R_...R 1. R
L 2 N 1

was a request oi the fcrm (T, AJ F.) where T. was the test ^ i i i i

predicate, A. was the action and F. was the flag. The ex-

panded form is (5, S_...S..) where S^ is a need plus a list
1 2 N i

of requests. That is,s.= (N. R., R.„.
1 1 11 x2

R...) where R . . is
iN X2

a request and N. is a need. A need is a Lisp predicate.

A request has the form (V T A) where V is the variable that

T focusses on, and T and A are the test and action as before

The flag is no longer necessary for removing a request

after its execution because the filling of the need by the

request's action automatically causes cha disappearance of

that request.

The list S. has a different interpretation when at-
i

tached to a word than it has when appearing in REQUESTS.

In the former case, S. ^s read as "If the need N. exists,

then (R., R.„...R .) is a list of requests whose actions

are releva.it to fillinn this need." When S. appears in
i

REQUESTS, however, it is read as "The need N does exist,
i

and (R,. R._...R.„) is e list of requests, whose actions II i z i .4
may fill this need, that have been suggested so far." An

S., when attached to a word, will be called a suggestxoa

of ways to fill a particular need.

The monitor, during analysis, maintains the list RE-

QUESTS. This list contains those needs currently active

plus requests relevant to those needs which have been found

186

-o far. When a new list of suggestions is encountered,

such as the sense of a new word, the need portion of each

suggestion is checked against the list of needs active.

If the nee:? portion appears in this list, then the Jist of

requests that follow is appended to the list of requests

that have previously been suggested for that need. If the

need portion of a suggescion does not appear in the list

of actual needs, the suggestion is ignored. That is, sug-

gestions for non-existent needs have no effect.

The reeds are generated either by the initialization

routines cf the monitor or by the action portions of trig-

gered requests. Thus, for example, there is initially a

need for a SUBJ and a suggestion that says "If you need a

SUBJ, take the first noun phrase." When a request builds

a structure in CONCEPT, it also adds a list of needs and

requests for completing that structure.

At this point, we must clarify wh^t it means to say

that a need portion appears in the list of actual needs.

The list of actual needs contains specifications of gaps

that arc relevant to tu.e particular structure being built

at the moment. A suggestion made by the sense of a word

will, however, be ir.tended for handling a general class of

structures, of which the one being built is a particular

ir^tance. For example, the monitor may have the need " (^

ACTOR)", that is, the actor of ai event caused by another

event is not filled. A word may have a suggestion for fil-

ling a need for an object that is directly affected by

some action, which could mean either the OBJECT of the act

or the ACTOR of t^.e event caused by the act. We shall see

specific uses of this kind of general need specification in

section 12.8 ("Example Definition Using Needs").

187

Because the need portion of a suggestion is apt to be

more general than the needs actually existing on REQUESTS,

a need portion is said to appear in REQUESTS when there is

a need which is a special case of that need portion. Situ-

ations where more than one existing need is an instance of

a need portion have not arisen in the examples studied.

The best way of resol"ing such occurrences is therefore

left open until more is known about them.

Three more comments about the analyzer extension re-

main. First, the list of expanded request forms is treated

like the former list REQUESTS with respect x.o functions

like IMBEO. The list of new forms, also called REQUESTS,

may be temporarily set aside in favor of another. Second,

just as there was a function ADD_REQ that alloweu requests

to add more requests, so there is a function ADD_SUGG that

allows requests to add new needs, and requests for those

needs. ADD_SUGG is the main function used for generating

new needs during the analysis. Third, senses can still

have requests that should be executed immediately, re-

gardless of the presence of a need. The word DO in the

need field of a suggestion tells the monitor to evaluate

the action following immediately.

188

12.8 EXAMPLE DEFINITION USING NEEDS

We now present a revised version of the first sense

of "give":

G1VE1:

(CONCHPT (Lhis signals a need fcr a value for CONCEPT
(SENSE (this is the focus of the firs*: suggestion)
(FEATURE SENSE (QUOTE ?OBJ)) 'the test and action of
(REPLACE CONCEPT the first request are

(QUOTE as before)
((ACTOR (NIL/ (ATRANS) TO (RECIP)
FROM (ACTOR) OBJECT (OFJ))

MODE (NIL) TIME (NIL)))))

'SENSE {this is the focus of the second suggestion)
(FEATURE SENSE (QUOTE EVENT)) (the test is the same)
(PROG NIL (but the actions are different fron before)

(REPLACE CONCEPT (UTILIZE (NORMAL_MEANING SENSE)
NIL))

(ADD_SUGG (this adds a suggestion to REQUESTS)
(KAPP_TO (this is a new need - HAPP_TO see below)

(RECIP (this is the focus of the only suggestion)
(FEATURE (CHOICE RECIP) (QUOTE PP))
(CHOOSE HAPPJTO (CHOICE RECIP))))))))

(DO (ADD_SUGG (this adds a need and suggestion to REQUESTS)
(RESP_FOR (this is the added need - RESP_FOR see below)

(SUBJ (FEATURE (CHOICE SUBJ) (QUOTE HUMAN)) (this is th*>
(CHOOSE RESP_FOR (CHOICE SUBJ)))))) suggestion)

(DO (ADD_SUGG (this adds a need and suggestion to REQUESTS)
tRECIP (this is the added need)

(SENSE (FEATURE SENSE (QUOTE HUMAN)) (this is the new
(CHOOSE RECIP SENSE))))) sugc,^stion)

The last three requests use the form (DO (ADDSUGG X))

where X is in need format. This forces monitor to add that

need (and the suggestion) to REQUESTS. If only X were used

then the suggestion would have been added to REQUESTS only

if the need referred to by X already existed.

The first of these need-adding requests, the one for

189

RESP_FOR, is interesting because, in a mrmal active de-

clarative sentence using "give", this request causes a

RESP_FOR to be filled before CONCEPT is given a value.

RESP_rOR (which will be exactly defined shortly) points

to either the ACTOR of CONCEPT if CONCEPT is a simple

action or to ACTOR of the first action if CONCEPT is a

causal. The fact that R^SP_FOR is filled as soon as "give'

appears means that no matter what value CONCEt'T takes on,

there must be a position for RESP_FOR. If there isn't,

then a trap routine is called that modifies CONCEPT in a

simple way. Namely the old value of CONCEPT is replaced

by:

ONE<=*DO

CONCEPT

The trap routine may also have to modify CONCEPT to fit

the rules of conceptual syntax. Basically, if CONCEPT is

a state, then it cannot appear as the effect of a causal.

Instead a state change, whose final state is the original

value of CONCEPT, is used. Using this approach it is no

longer necessary to have three requests to handle "John gave

Mary a push," "John gave Mary a scare," and "John gave

Mary a headache," even though the first is a simple action

(PROPEL), the second is a causal idoing something causing

fear), and the last is a physical body-state. Now, with

general role specifiers, like RESP_FOR, and observing con-

ceptual syntax rules, the few requests shown are all GIVEl

needs.

The first request under GIVEl has two suggestions for

filling CONCEPT. The main difference between these sug-

gestions and the original definition is that each sugges-

tion fills only the gap for CONCEPT and perhaps some of the

gaps in the structure built for this filling. Therefore

190

the first request does not fill OBJ at the same tinu» a;; it

fills CONCEPT. This is done by the third request under

the need OBJ. The first request also does not fill in the

ACTOP of the ATRANS, because the RESP_FOR request is al-

ready prepared to do this.

RESP_-?OR, HAPPJTO, and RECIPIENT (not used in this

example) are three general (as opposed to particular) need

descriptions. Each of these is a match for several pos-

sible conceptual structures, all of which are considered

equivalent by the suggestions using them. RESP_FOR is

short for "responsible for". In a conceptualization it

refers to the actor of an act, if the conceptualization

is a simple action, or to the actor of the act that caused

some other event, if the conceptualization is a causal

structure. HAPP_TO is short for "happens to". In a con-

ceptualization It refeiT. to the object of an act, if the

conceptualization is a simple act, or to the actor of the

state change that is caused by an act, if the conceptuali-

zation is that kind of causal structure. RECIPIENT refers

to the recipient of an act, if the conceptualization is

a simple act, or to a terminal state in a state change caused

by an act, if the conceptualization is that kind of causal

structure. Graphically these definitions are:

DESCRIPTOR GRAPHIC POSSIBILITIES

RESP FOR * WDO

or

HAPP TO

X

ONE^

DO

o
DO* •

191

■

■ "■■ ■ .. ■:■ . .- - ■ ■:■- : . ■ -

I
I
1

or

RECIPIENT ONE^=^D0e

or

ONE

ONE

DO

fr--> x='

The "*" in each graph is the point specified by the descrip-

tor.

The advantage of a general descriptor can be seen in

the second suggestion for the need CONCEPT. There HAPP_TO

is used to find a place for RECIP in the conceptual struc-

ture provided by SENSE. SENSE might be either a simple

action or a causal but HAPP_TO allows us to simply specify

where RECIP should go in either case. The same advantage

is true for tne use of PESP_FOR in the second request.

Several items were left out of this description. First,

there should be another DO request to, as before, set the

preposition "to" to initially specifying the RECIP. Also,

it must be remembered that the monitor will initialize

REQUESTS to several needs, notably CONCEPT (and attendantly

a -IME for the conceptualization) and SUBJ. In talking

about request manipulation during text analysis, these items

will not be important.

192

CHAPTER 13

THE EFFECT OF KNOWLEDGE ON ANALYSIS

13.1 TEXTS AND NEEDS

None of the above is meant to reduce the power that

the analyzer had using simple requests. Instead more in-

formation is being added to the requests to increase their

power. But the power of this extension will not be seen

in definitions like GIV'El as used in single sentence an-

alysis, but from a consideration of the problems of hand-

ling texts of more than one sentence. How then does the

mechanism of need apply to the analysis of text?

First, the need mechanism means that text analysis

does not require two separate request lists. In the flow

of analysis described in Chapter 8, one list disappeared

at the end of a sentence and the other did not. With the

need mechanism, only one list needs to be kept. When a

sentence ends, many of the needs disappear and take their

requests with them. This is because when the end of a

sentence occurs, crap routines are triggered which fill in

the various remaining gaps of the CD structure that is the

interpretation of the sentence. With these gaps f^led,

the associated needs disappear. There are, however, as

shall be described in this and the next sections, needs

which are not concerned with gaps inside structures

built by the analysis of the sentence. These therefore

remain, except for those filled as a result of the analy-

sis of the sentence.

193

Initialization of requests at the start of a aentence

can now be viewed as a trap, triggered by the occurrence

of a word with absolutely no structure to tie it to. That

is, everything from the previous sentence has been closed

and when a new word is seen, a trap routine, trying to

find a use for the word, decides it is starting a new sen-

tence. Therefore it creates the CONCEPT and .SIJBJ gaps and

suggests that SUBJ be filled by the first noun phrase.

There are two advantages to handling initialization this uay.

First, it moves more language data from the monitor to ex-

ternal data. Second, it makes the initialization more ac-

cessible for modification by previous analysis. This is

not a crucial point at t^ls stage, however.

Nt;eds also provide ^ne motivating element In the analy-

sis of texts. A text, 1 claim, has certain needs, generated

by:

a) the occurrencr- in the text of certain sentences

and their interpretations;

b) the desire to unite these senuences and struc-

tures into one coherent whole.

That is, a text has the same relationship to its sontences

that sentences do to their words-.. In the letter case the

sentence was seen as being the result of actions and pre-

dictions, initiated by SOITIR words and concepts, that tied

together the other words and concepts. The next section

begins the description of the needs anrl actions that occur

at the supra-sentential I^VPI that perform th^ same role

of forming a coherent whole.

194

I
I

j 3# 2 CONTEXTS AND STORIES

|
4,

A context cluster is a coherent set ot thoughts about

some topic. Some of these thoughts are passive beliefs

and are represented with CC graphs. Others are active in-

structions for behavior. These instructions are of two

types. One type involves the activation of contextual

lexicons, of jargons for the topic involved. The other

type involves the making of predictions about things that

might be seen next and how to treat them. These instruc-

tions are the trap routines associated with that cluster.

In the extended view of analysis, there is a close

relationship between passive conceptualizations that ap-

pear in a cluster and active conceptual predictions. This

is accomplished through the use of needs and story-patterns.

A story-pattern is a sequence of conceptualizations.

These conceptualizations are descriptions of events, and

these events are tied togethsr by relationships of causa-

tion, instrumentality, and simple chronological sequenc-

ing. A story-pattern, then, is a subpart of a context

cluster. Clusters may involve a number of such patterns.

For example, the context cluster for hunting involves

storitr about travelling, stalking, killing, returning, and

so on.

The use of th<i term "story-pattern" is maant to give

an intuitive feeling to the kinds of st r11^*-'-. os being pos-

tulated. The setting of boundaries between sequences of

conceptualizations and the labelling of them as storie-

is not a phenomenon that is assumed to occur in the mind

of a human. What is being claimed is that certain conceptu-

alizations, when recognized, lead to predictions that cer-

tain other conceptualizations will be encountered scon. The

195

intuitive idea of a story emphasizes a situation where

such predictions are fairly strong, that is, where sen-

tences are not treated as isolated from each other but as

being intimately related. Our treatment of sentences im-

plied the same motivation in assuming that "John beat Mary"

was not a simple sequence of words like "ball stick band"

but a coherent whole.

But the prediction of conceptual structures from other

conceptual structures is not enough. These predictions

are of static conceptual patterns. For analysis to make

practical use of these patterns they must be converted to

active predictions about the input that can guide the

course of language analysis.

Needs and foci are used to convert the predictions of

a static story-pattern in a context cluster to active ef-

fects on text comprehension. When a text, T, is following

a story-pattern, S, we mean that, so far, if the story-

pattern S has the sequence of conceptual structures:

A 4a B +■ C^M D

then the interpretation of T has generated some subsequence,

such as:

*^== B'^H C'^= *

where B' and C' are considered to be instances of B and C.

Thus, for example, the single sentence text, "John hated

Mary," can be said to be following the story-pattern:

Person-l do something bad to Person-2 causes

Person-2 not like Person-l causes

Person~2 do something bad to Person-l.

The interpretation of "John hated Mary" is an instance of

the second line of the story-pattern.

If a text T is a subsequence of a story-pattern S,

then there are naeds to extend T to include elements of S

196

that are not yet present. In particular, if T and S have

the abstract form from above, then there is a need for each

of the *,3. The left * is a cap with a need for an instance

of A and the right * is a gap with a need for an instance

of D. Notice t-.hat this ic- not a restriction on the order

of story presentation in the text. All it predicts is

that the next line of the text might satisf'- one of th«se

two needs. In the single sentence text, "John hated Mary,"

there are two needs generated after the analysis of that

text. One is for a specification of why John hated Mary

(first line of the story-pattern) and the other is for a

specification of what John will do in retaliation (third

line of the story-pattern).

Further, these needs have suggestions for filling them,

based on the static information that the story-pattern pre-

sents. In the abstract case of T and S, these two needs

for the left and right s a r e :

need reason for B' (i.e. ? ^B ')

suggest instance of A

need result of C' (i.e. C' tee?)

suggest instance of D

For the text "John hated Mary" this means:

need ? ^»John hate Mary

suggest Mary do something bad to John

need John hate Mary 4s ?

suggest John do something bad to Mary

The suggestions arc in the form of conceptual patterns.

If a sentence is interpreted as a structure that fits one

of these yctterns, then immediately the analyser can de-

cide what role this structure plays in a coherent inter-

pretation of the text. More importantly, for explaining

197

contextual effects on the course of analysis, the results

of partial analysis can oe used to reduce the cet of pos-

sible patterns. And fewer predictions means that the pre-

dictions that remain have a greater effect on the flew of

analysis. The end cf the sentence will '„c: s ^n from a very

narrow viewpoint, even though that end might be highly

ambiguous. This will be illustrated in the sections that

follow.

An important point to make about the use of story-

patterns with texts is that a text has only a limited view

of the pattern. As far as prediction goes, the analysis

of a text leads te the expectation only of those conceptu-

alizations in the immediate vicinity of the equivalent story-

pattern element. Further, as the text moves along a pa;-

tern, earlier lines in the pattern drop out of view. Thus,

for example, if the text is "John hated Mary. .Je gave her

a sock," I believe that tha set of predictions at the end

of the analysis of the second sentence, based on a story-

pattern, is basically that either she is hurt or she will

do something back. The previcusly made prediction, that

there would oe a specification of why John hated Mary, is

lost from view as the text has moved along the story-nattern.

Indeed, t-he sentence "She hit him" has difToront relation-

ships in the two texts:

1) John hattv.i fiary.

"he hit h.m. (This is why ho hated her.)

2) John hated M ry

H gave her a sock.

S' 3 hit him. (This is her response to being hit

;, John .)

Rules for telling exa_ how limited a view a text

has of a story-pattern cannot be given here. This is

190

p^tly because of lack of experience. But it is also hard

to answer because it involves a question of pragmatics.

With a wider view, more predictions are made. With more

predictions, the greater is the chance that an immediate

use can be made of a sentence in a text. But at the same

time, with more predictions there is more bookkeepin- and

a greater chance that confl-cts between p^^diction? will

arise and have to be resolved. The example of story-pat-

tern prediction that will be given uses only the two adja-

cent lines in the story-pattern, a very restricted view,

but no final answer to the question is being given here.

The predictions based or story-patterns are also limited

to those involving links like the causal. That is, the

reasons and results of an action are predicted by the static

story-patterns. A more dynamic and hence more flexible

apprü4Cv- to making predictions about reasons and results

is developed in Rieger (1974',. The two approaches are not

contradictory but rather they emphasize different aspects

of the problem. Rieger's work focusses on predictions,

based on general beliefs, involving a fair amount of de-

ductive manipulation. The predictions here are based on

idiosyncratic, highly specific beliefs, such as what goes

on during a hun1-. 'What is described here is really -ust

one facet of the qnneral inference task discusjnd uy Rieger.

Story-patterns do not predict sentences modifying

a previous ssntence. For example, "John made Mary mad.

She had never b^en so furious," has a second sentence modi-

fying a .state change described by the first. The content

of the second sentence, while consistent with the first,

would not be predicted. The second sentence occupies a

role in the text much like the role an adverb plays in a

sentence. In neither case is it predicted, but in neither

199

case is it inconsistent.

At this stage in the development of extended analy-

sis, it cannot be said how many predictions it may be nec-

essary to carry along at one time. Those predictions aris-

ing from story-patterns should not be too numerous. Ftory-

patterns do not predict all the possible consequences and

antecedents of an event. Instead they predict only those

that are most likely to be mentioned. The predictions are

very oriented towards the task of language comprehension.

It may be that story-pattern predictions and contextual

lexicons, both of which are brought into working memory

as part of context clusters, are not enough to model all

the assumptions about meaning that people can make when

understanding texts. However the analyzer will not fail

to know what to do witn a sentence if no predictions ex-

ist. The analyzer always has something to work with, based

jn the requests associated with the words of the sentence.

Any predictions, in fact, require the presence of requests

to have an effect. If som3 prediction J.S not made that

should be, the analyzer still constructs some interpreta-

tion of the sentence for that context. There is at least

one other source of prediction, based on stylistics. This

is mentioned briefly in section 14.1

It should be noted that just because a certain sense

of a word is the best choice in some context, it needn't

be the case that this sense is predicted fror, »-he context.

It may be that initially one sense of the word is chosen

but the final interpretation of the sentence that results

fits badly with the conceptualizations of the previous text.

Therefore reanalyses are tried until a satisfactory inter-

pretation is found. These reanalyses may choose a different

200

I
I
I sense of the word in question, and it is indeed true that

context has determined the final sense of that word.

This kind of effect is not the kind we're trying to

explain here. Rather we are concerned with those cases

where the choice of a word sense seems clearly determined

the moment it is encountered. The predictions from story-

patterns seem to provide this kind of determination.

201

MIL ' -'T'-'
„T „ ,

13.3 PATTE RNS TO PREDICTIONS

suits of that analysis. Pattern A is X Y Z

is X1 Y1 Z2 and pattern C is X Y Z .

The basic method of generating predictions fron patterns

is this: suppose at the start of the analysis of a sen-

tence three patterns have been predicted as possible re-

pattern B

Assume these are

the only patterns predicted. Then thej.e is a prediction

that the analysis will produce a structure beginning with

X . If X is found, then a prediction can be made that

either Y or Y will follow. If Y is found then there is

a prediction that ü or Z will follow. If Y^ is found

thi- there is a prediction tha.. Z will follow.

The ohrase "will follow" is talking about the final

result of the analysis, not about the order in which the

items are discovered. For example, we would also predict

from --Z tnat X Y will be found.

To take a concrete example, suppose the story-pattern

for the text "John hated Mary" generated two conceptual

predictions that said:

John will GO something bad to Mary.

Mary did something bad to John.

It the next sentence is analyzed to the point of "John<=^do",

then a prediction should be made that Mary is the HAPP_TO

of the "do" and th^t this is bad for her.

This conversion of pattern to prediction is only the

beginning, of course. The prediction crtated is about con-

ceptualizations. The analyzer needs predictions about

language events, based on these conceptual predictions. In

the previous description of the analyzer this conversion

was crudely done. If the analysis produced an une' cted

conceptualization, then the analyzer was told to try again.

The next sections are concerned with a more refined approach

to the conversior..
202

I
I

13.4 CrNCEPTUAL REQUESTS TO LANGUAGE REQUESTS

Consider the text example, "John hated Mary. He gavt-

her a sock." The analysis of the first sentence, wo have

claimed, results in a number of conceptual predictions.

One of them is that John may do something to hurt Mary.

Such a prediction is independent of a particular language.

As such, it says nothing about what might be seen or heard

next i r. a particular language. Conversion is necessary.

As mentioned before, one means of conversion is to

wait until the language processing is done, that is, wait

until a conceptual structure is built. When such a struc-

ture ts built, it can bo compared with the conceptual pre-

diction.j fairly simply and be accepted or rejected on the

basis of this comparison.

There aro a number of flaws with tnis approach. A

major one is that it depends on reanalysis to eventually

produce the desired result. But it is very difficult to

direct reanalysis towards a better interpretation. Just

eliminating one path is not very helpful. Many wrong paths

may be taken before a good one is found, or before it is

decided that tho sentence does not follrw the predictions

and the original interpretation should be used. And if

cackup routines are able to affect the flow of the rean-

alysis, then it should have been possible for the analy-

zer to have caused such effects when the analysis was first

done.

The alternative approach to convers on is to affect

the stops in tne analysis directly. This means changing

the set of requests active by recognizing what a request

does. But requests are difficult tu recognise for two

reasons. One is that requests till now have been grouped

20 3

together under the situations that trigger thorn. On- situ-

at ion, as looked for by the test portion of a requust 'i , j-

ger;; a number of diffe.'ent actions. Some of t ho act ions

perform conceptual duties and some syntactic, and there is

no guarantee that the actions a request performs share a

common purpose.

The second reason for difficulty in recognizing request!

comes from the simple fact that the information about what

an action does is not explicitly stated but only implicit

in the functions and arguments used. An action relevant

to CONCEPT might annear either as a call on REPLACE or IN-

PLACE, with the first iirgumct being CONCEPT. A particular

position in CONCEPT might bo filled either by CHOOSE, IMBED,

or INPLACE, and the request doing such might be hidden in

the setting of a sense of a preposition.

The idea of a leed Is relevant to both these diffi-

culties. It is directlv related to the second because a

need is an explicit statement of the purpose of a request.

No matter what functions are used by the request, if the

request appears under the need CONCEPT, then it is placing

a value in CONCEP" And because requests are organized

under needs and n situations, the first difficulty is also

taken care of. If requests are grouped by needs, then there

is no case of one request performing several unrelated ac-

tions .

In Chapter 8, on raul ti-sen tence analysis, there were

two texts involving conceptual predictions. One was "John

hated Mary. John gave Mary a sock," and the other was

"Johr was hunting. John shot a buck." The first will be

redone in detail later, to illustrate text analysis using

needs and story-patterns, but a brief word can bo said now

■04

about the way both can be .jnalyzod.

In the text "John hated Mary. John 'jave Mary a sock."

tho need for a value for CONCEPT is utiliaed. Analyzing

the first sentence sets up a prediction, among others,

that the topic of the second sentence is John doing some-

thing bad to Mary. Initially, then, there is a preference

that CONCEPr be an action by John detrimental to Mary.

When the word "give" ic en-:ountarcd in the second sentence,

there are two requests for GIVEl grouped undar the need

CONCEPT. These were given in section 12.9. One of them

offers an ATRANS framework for CONCEPT and the other says

the framework is specified by the OBJ of the verb. At this

point the analyzer can prefer tho second request over the

first because it assumes t t ATHANSing someone an objeci.

is not normally detrimental to them. That is, the first

request does not match the prediction and is downgraded.

If the analyzer prefers the second reglest, then it prefers

the situation that triggers the second request, whwch JLS

that the OBJ be the name ol an e^ent. Eventually, as we

snail see, this leads to the preference that "a sock" refers

to striking someone and not to an item of footwear.

The other text, "John was hunting. John shot a back,"

involves the need TO which is the conceptual goal of a mo-

tion act. The first sentence sees up the conceptual pre-

diction that John is shooting bullets at animals. Referring

to the definition (unmodified of course "shoot" in

section 3.3, we see that there are two requests filling

CONCEPT. 0-u- involves the PROPELing of bullets (shooting)

and tue other involves tin spending of money. The analy-

zer doesn't know that the pattern "John shoot bullets at

animals" really applies until the value of CONCEPT is set.

2 0 ri

by "shoot", to "John shoot bullets at ♦." At this point

the pattern match with the conceptual prediction leads to

the prediction that the TO should be an animal. Under the

need TO is a request triggered if the OBJ is an animal.

Therefore the preferred situation is that OBJ refer to

aT animal and this leads to the interpretation of "a buck"

as a deer and not a dollar.

From these two sketches, we see that the path of con-

version is from context cluster to story-pattern to con-

ceptual!: ation to preference. Preferring certain results,

coupled with the information provided by needs that identify

what situations lead to these results, is the method by

which language predictions are finally generated. The idea

of preference, and what it means for the analyzer, is the

topic of the next four sections.

206

J

.. 13.5 PREFERENCE SENSE CHOICE

..
In the analyzer described in Part I, the sense of a

word was picked from a list of possibilities associated

with that word (or with a root form of that word). The

monitor program did this using a function railed FIND_SENS£,

Little was said about the function becau.-e it had little

to "i. It took the one sense that appeared under the pro-

perty CURRENT, if there was such a sense, or took the first

sense on the list under the property COMMON, if CURRENT

was empty. The real work of disambiguation of words like

prepositions was done ahead of ti.ue by the requests of

other words. These requests gave particular values t3

CURRENT, which EIND_SENSE returned when called.

In the extended analyzer, F1ND_SENSE is slightly more

complicated, due to the addition of preference. When no

preference is present FIND_SENSE behaves as before. When,

however, a preference does exist, FIND_SENSE tri^.s to sat-

isfy it. For example, if there is a preference that the

word that FIND_SENSE AS working with refer to an animal,

then FIND_SEHSE will not simply return the CURRENT sense,

cut instead will search CURRENT and COMMON for a sense that

has the f«?ature of being an animal. If there is none, then

FINU_SENSE behaves as if there is no preference. If there

i^ such a sense, it is tho value that FIND_SEN.t5E returns,

rather than whatever CURRENT may be. At the same time this

sense should probably be made the new value of CURHENT,

but that will not concern us here.

The preferences that P1ND_SENSE must apply ate those

that were parsed down the chains of request dependencies

to the role variable SENSE. Now, most of those reqiosts

that refer to SENSE expect it to be the sense of a noun

207

phrase. For example, a request that fills RECIP with the

value of SENSE, if the value of SENSE refers to a human,

is expecting the sense of a noun phrase, like "a man", not

just "man". A noun phrase introducer, like "a", temporar-

ily sets aside all other requests. When a noun phrase has

been built, these requests are ref'.rned and SENSE is set

to the r.ense of the newly built noun phrase.

FIND_SENSE, however, is needed while the noun phrase

is being built. This is because the end of a noun phrase

is recognized by encountering some word that cannot belong

to the noun phrase, such as a verb. But to know that a word

does not belong, it is necessary to know the sense of that

word. Therefore FIND_SENSE is called during the building

of noun phrases.

Now, it is possible that FIND_SENSE will have to ap-

ply two separate preferences to the words in the noun phrase

being built. This happens with verb- that have both the

RECIP and the OBJ syntactic roles, such as "give" does.

Each of these roles contributes information tc the final

conceptual structure that is the analysis result. There-

fore a conceptual prediction about that result may lead to

preferences about the natures of both RECIP £.nd 03J. But

when a roun phrase is being built it Is not known whicn

role it is joing to be playing. Hence it is necessary to

apply to a noun phrase being built the preferences for

both OBJ and RECIP.

For example, consider these three two-sentence texts:

A) John was feeding the detr at the zoo.

He gave a buck some peanuts.

John was feeding the deer at the zoo.

He gave a buck to the peanut vendor.

John naw a beggar on the street.

He gave a buck to him.

200

H)

C)

I
I
I
I
1
i

!

..

I assume that "a buc'r." refers to a deer in text (A)

but to a dollar in texts (B) and (C), Looking at the

analysts of these three texts we can see the application

of preferences for both RECIP and OBJ. The B) example

also gives us a chance to mention backup, because it is

clear that the right sense for "a buck" cannot be picked

on the first pass in both (A) and (B).

In text (A) the conceptual prediction is that "John

will give rood to a deer." Therefore, once John and giving

are recognized there are two preferences to apply to the

noun phrase "a buck". One prefers that "a buck" refer to

a deer and the other prefers that "a buck" refer to food

normally given to deer. Only one of these preferences

succeeds and this is, of course, the deer sense of "buck".

Once the deer sense of "a buck" is chosen, it becomes the

FECIP because it is animate.

In text (B) "a buck"is also taken as referring to a

deer. But now the phrase "to the peanut vendor" supplies

another RECIP, because of the "to". This conflicts and

causes backup to occur. The actions that I think occur

at this point in the analysis are beyond programming at

this time. Basically, "giving to the peanut vendor" is

assumed to be the ATRANSing of something to him. There

are gap-, to be filled for the OBJ and OBJECT of the "gave"

and "ATRANS" respectively. A peanut vendor (or any kind

of salesman) is a person .. rom whom one normally buys things

by definition of "vendor". conceptually, then, there is

an ATRANS of money to the vendor. Therefore, there is,

by pattern matching, a prediction that the object of the

current giving lie money. Further, since RECIP is filled,

tne analyzer knows that the other noun phrase must be the

109

—Mi

OBJ. This other noun phrase is "a buck". The preference

that OBJ refer to money can be applied to this noun phrase,

and tnereby the money sense of "a buck" is chosen.

Notice that this description of ehe analysis would not

choose the money sense of "a buck" in the following text,

even though backup occurs, bacause no preference for money

would arise:

D) John was feeding the deer at the zoo.

He gave a buck to a little boy.

I think that choosing the animal sense of "a buck" in (D)

is a reasonable interpretation.

The analysis of text (C) involves a conceptual pre-

diction based on the f ct that a beggar is someone who

normally asks people to give him food or money. The con-

ceptual pattern predicted following the first sentence is

"John rray give money to the beggar." There are two prefer-

ences, then, for the noun phrase following "gave". "A

buck" should either refer to money or to the beggar. In

this case it can refer only to money and this sense is

chosen. This means simultaneously that the noun phrase

"a buck" is chosen as the OBJ, The prepositional phrase

"to the beggar" does not conflict, and the analysis proceeds

without prob lern,-

The text examples (A) through (D) illustrate the ac-

tion of preference on the choosing of senses for words.

These preferences can be used effectively in converting con-

ceptual predictions to language analysis effects.

A point made was the way in which the analyzer applied

preferences when It knew that a particular item must fill

a certain role. For example, in text CO, there was a pre-

diction, after backup occurred, that "John v.ould give money

210

to the peanut vendor." But because the analyzer knew that

the conceptual TO was already filled (by "the peanut vender"),

it knew that the only preference to apply to "a buck" was

the preference on OBJECT for a reference to money.

This section began by mentioning FIND_SEN.SE because

the focus of this section was on preference of senses for

individual words. In the next section we back up a bit

an-? focus on how preferences about sense choices are ob-

tained.

11

13.b PREFERENCE: EXAMPLE ANALYSIS

Eventually the conceptual predictions that are mads

from the conceptual patterns need to have an effect on the

choice ot word senses. The text/ "John hated Mary. "ohn

gave Mary a sock," will lu- the model for de cribtng cue

r^n ipulat tons the analyzer .Trust perform when converting

conceptual patterns to preferences of word senses. The

description th it follows is an expansion of the sketch

presented in section 13.4 ("Conceptual Requests to Language

Bequests").

When tne sentence, "John hated Mary," i3 a'laly^ed, the

following pattern is predicted (among others) as a possible

topic of the next sentence:

JOHN6=4DO

L JOHNt=$DO

MARY 4r-
That is, John will do something that could cause Mary to

undergo a negative state change.

When the second sentence is analyzed, the requests

for "gave", i.e. GIVE1, are added. Thes? are detailed in

section iw.3. The monitor has a predicted pattern for

CONCEPT. Therefore it look^ at those request- that nave

been suggested whose need is CONCEPT.

Using needs the monitor picks a subset of the requests

waiting, knowing tnat each of these requests, it executed,

fills the gap in CONCEPT, but not other gaps that are wait-

ing to be filled. Therefore the monitor can Gee what each

request does by fi'ot saving the current value of COMCEPT

? 1 2

I

j

• »

(presumably empty although some information, like TTMH,

may be already specified), evaluating the action of the

request and looking at the resultant value of CONCEPT.

It must also assume that, for thn moment, SENSE is NIL

since, as in GIVEl, some actions use SENSE s a building

element. Afterwards the original value of CONCEPT is re-

placed. The monitor must also save ternporar ■ the value

of REQUESTS since the buixding of a structure may entail

the addition of suggestions for completing it.

While the hypothetical value of CONCEPT is present

the monitor also triggers those requests that fill needs

this assumed structure generates. In this hypothetical

mode, however, these requests are not deleted once they

are used since, of course, they have not really been used.

It should be noted that the requests triggered by an as-

sumption like this are the special "must be used" requests.

For example, the RESP_FOR created by "John gave..." is

such a request. The RESP_FOR has been filled and is waiting

to be used, not to be filled.

In this example the monitor evaluates the action of

the first suggested reqjest for filling CONCEPT. This

creates the structure:
o R

£-]^=^ATRANS ^—(OBJ)v— C
(RECIP)

There are, since neicher OBJ nor RECIP are known, gaps in

this struccure for everything except the act. The gap for

the ACTOR is filled however, by the RESP_FOP. request and

this produces:
(RECIP)

[OHN^=^ATRANS «^—(OBJ)* 1
•—<JOHN

At this pr.nt all the monitor can build with this

assumption is done. New it knows that it has John doing

213

some action. It asks memory, therefore, if John can hurt

Miry by giving away something, i.e. it asks about the struc-

ture:

»(RECIP)
JOHN ^ATRANS £—'.

>i> ?

OBJ)^-!
JOHN

MARYt*

In some contexts the answer to this would be "yes".

For example, if John had something that Mary wanted and,

further, which she hopad to get some day, then he cculd hurt

her by giving the object to someone else. But assuming

that such a situation is not known to memory, the answer

would be "no". That is, giving things is not a normal way

of hurting people. Therefore the monitor demotes this re-

quest. That is, tne monitor has a negative preference to-

wards situations that would make the test predicate of this

request become true.

Tins negative preference has an effect only if there

are other requests which are not negatively preferred. In

this example the monitor has yet to look at the second sug-

gestion for CONCEPT. When it activates this one, no struc-

ture is produced. This is because the structure depends

on what the value of SENSE is, and SENSE is assumed to be

NIL for the moment. Because there is 1:0 structure, the

monitor neither prefers nor rejects the second suggestion.

Therefore this second suggestion is preferable to the neg-

atively preferred first suggestion. This means that the

situations that would make the test predicate of the second

suggestion true are preferred.

The focus of the tr-st predicate is SENSE. This means

that the test predicate is passed to F1ND_SENSE and when

FIND_SENSE is applied to a word, it will look for a sense

214

I

I

that makes tMs predicate true. If none exists, it returns

the CURRENT or first COMMON sense, as usual.

In this example the test predicate is "(FEATURE SENSE

(QUOTE EVENT))". When the analysis reaches "sock" in "John

gave Mary a sock," this predicate is true only for the sense

of "sock" that means "to hit someone". Thus the final in-

terpretation will be that John hit Mary.

The original analyzer of Parr. I, with the addition of

IM REQS and such, was able to do the same example and achieve

the same final result. However, the steps in the two analy-

ses differ in the way the final choice of a meaning for "a

sock" is made. In t' : original analyzer, a choice for "sock"

was "lade, a total structure was built with this assumption

fo: the OBJ of "gave", and then, if memory didn't like the

esult, the work was undone and a different sense of "sock"

was used. In the extended approach, the point at which mem-

ory is asked about, the possible consequences of an action

by John occurs before "sock" is seen. Having "gave", it

turns out to bo possible to prefer one request over another.

With this knowledge, the final sense of "sock" can be found

using only the fact that an event, not a physical object,

is desired.

This effect, that decisions are made as soon as enough

information becomes available, was one of the goals of the

extension of the analyzer. Even the separation of the

RESP_FOR request, which is not important for this example,

is int..Tided to further this effect. By separating, the

monito" can tell that no matter what request is used, the

3UBJ, if a person, is the RESP_FOR in the final result.

One example of course cannot include all the possible

problems that occur. Th>; next section looks at the general

mechamism by which predictions are passed along chains.

215

13.7 PREFERENCE: FOLLOWING A CHAIN

In section 12.b the following of a chain from need to

focus and back to need again was referred to. As such a

chain is followed, predictions are made and passed along.

The example in the previous section nad some simple in-

stances of creating new predictions by using the tett pre-

dicate that the monitor wished would be triggered eventually.

This is a special case of the general method of chain fol-

lowing.

The general case consists of having a preference P,

and a request with the form:

(NEED (FOCUS TEST ACTION))

where ACTION involves giving a value to the NEED role. So

we could write the request as:

(NEED (FOCUS TEST (NEED< FORM)))

often NEED is something like OBJ. Then usually both

FOCUS and rDRM are equal to SENSE. When NEED is CONCEPT,

FORM ma/ contain the FOCUS as a part. E.b. FOCUS may be

SENSE and FORM will be equal to:

ONE*a=^DO

SENSE

When the monitor applies P to some reqiast, P is actu-

ally applied to the FORM. If FORM satisfies P then TEST

is the new preference. It is applied to the requests fill-

ing FOCUS. If FORM contains variables, then to make it

satisfy the preference P, some conditions, i.e. preferences,

may be placed on t-.hese variables as well.

If FORM is just one variable, then P is passed directly

to it. If FORM ir. more complicated, it then becomes a

matter of finding those conditions which would make FORM

216

 —r—TlJ-

..

satisfy P. There will be conditions about the variables

in FORM.

For e,ample, suppose FORM were:

. v o R r^ JOHM^.>ATRANS* MONEY *
-<JOHN

ard the preference was that John does something good for

Mary. Nov a condition in FORM that would make this true is

that the recipient of the ATRANS be Mary. Therefore this

is a preference that would be applied to the requests try-

ing to satisfy the need for TO.

If the preference on TO is not blocked at some point,

I.e. the chain does not end with a set of requests all of

which are negatively preferred because all contradict the

preference, tfu'ti the monitor can accept the original request,

Then it can use the TEST to generate a preference on FOCUS,

as well.

Now if FOCUS and FORM are the same, there will be two

preferencss waitii. ; at the same time. For example, with

the request:

(OBJ (SENSE (FEATURE SENSE (2UOTE POBJ))

(CHOOSE OBJ SENSE)))

and the preference "(FEATURE OP"» 'QUOTE MONEY))", monitor

would first follow the FORM and pasr; the preference on to

SENSE, then it would follow FOCUS and put the test predi-

cate on SENSE as well. The final preference on SENSE would

thus be:

AND (FEATURE SENSE (QUOTE POBJ))

(FEATURE SENSL (QUOTE MONEY)))

Effectively this is equivalent to the simple prefer-

ence for money, assuming that money objacts are always

physical. This is why informally one can talk about simply

passing ^ very specific preference through an action like

CHOOSE.

217

It can now be seen that the descriptior. of the analy-

sis of "John hatet' Mary. John gave Mary a sock" omittea

the passing of preferences on FORM. For if the preference

that "John hurt Mary" is applied to thr> FC?M in the second

suggestion for CONCEPT, then there is a preference that

SENSE not only be an event, but that if John is RESP_FOB

this event, then Mary would be hurt by it. This extra

preference does not affect the example analyzed. What it

might affect is a case where the object of "gave" could

either be a physical object or some event that benefits

the RECIP of "gave". In the simple description of text

analysis, trie non-physical sense would still be preferred

because there is no mention that the sense should be neg-

ative. In the description just given, the sense choice would

depend on whether thwarting a prediction at this point

should cause the entire chain of preference to be undone,

and hence perhaps prefer the ATRANS request, or the chain,

once built, should be mairrained and the non-physical sense

used despite the fact that it contradicts one of the pre-

fe'"Dnces. It is not clear at this time which reaction to

thwarted preferences models human behavior best.

It should also be pointed out that for the monitor to

pass preferences along FOR" as we.'.l as FOCUS, it still

does not need the capability to read Lisp programs. What

it needs to know is when and where FOHM involves roles like

SENSE or SUBJ. The functions CHOOSE, REPLACE, and INPLACE

did not, ever, in tne original analyzer, pass just the values

of the roles. They passed the pointers these roles had

to their values. In the extended analyzer, they rust also

keep track of the role names that these pointers belong to.

With this, monitor can execute a gap-filling action and

then, looking at the result, can see what roles were used

in what structures.

218

..

i.

The next obvious topic would be how the conditions

are created that must be true if FORM is to satisfy a pre-

ference. .at this point however the discusoion will stop.

We have seen how the analysis system can construct a con-

ceptualization whose truth-value affects the course of

further analysis. And we nave seen how purely conceptual

answers, as returned by general memory processes, are used

by the analysis system to make predictions about future

lanquage events.

The distinction between memory and analysis processes

should not be understood as a claim that there is a real

difference between them. In fact, one of the major Argu-

ments for the analysis system described here is th?t its

devices are reasonable general cognitive processing devices

In a simple way expectations are tied together by the roles

which they depend upon and affect. Likewise in a simple

way conceptual information is diffused through this struc-

ture of expectctions, so that new knowledge is available

to all expect'^ions in appropriate forms.

The distinction of processes that begin with or end

with language elements, from thor ■• that do not, serves one

purpose. It offers a reasonable point at which this des-

cription of an analysis system can stop.

We can summarize the general preference passing al-

gorithm. It starts with a preference, that is, a predicate

about the value of some role. The requests whose NEED e-

quals that role are examined. Examination consists of

executing the ACTION of the request and looking at the

structuie, if any, that is produced. Within this struc-

ture will appear the names of those roles whose value at

the time of execution is not yet known. These are the

2 1 9

variables of the structure.

The analyzer, using memory, asks if the structure pro-

duced satisfies the preference predicate. If the answer

is "no" the preference passing fails. If the answer is

"yes", there may be conditions on the values of the vari-

ablen in the structure which must be satisfied. These con-

ditions are passed as preferences to the requests whose

NEEDs equal the role names/variables. If all of these pre-

ference chains succeed, then this request is preferred.

This means that the TEST predicate is applied as a prefer-

ence to those requests whose NEEDS equal the FOCUS of the

preferred request.

A preference chain terminates successfully when the

focus of a preferred request is SENSE. At: thi? point ev-

erything that is known about the current state of the analy-

sis has been used. Now the analyzer must wait for wore

input.

2 20

J

I
I

'
■:. ..

i .

i .

CHAPTER 14

I, REVIEW

14.1 OBSERVATIONS

At various places in Parts I anu II, gent.-ral statements

were made about the analysis system. These were basic princ

pies that were intended to explain why things were done

the way they were. Some of these principles were about the
.....
i i

analyzer itself and some were principles behind the princi-

ples. All of these statemoits were reasons for what was

being done, although these reasons were of different levels

of abst ract ion.

At this point we can make a few more statements about

the analysis system. These are more in ehe nature of ob-

servations, looking back at what the assumed principles

led to.

The Need as Organizer

The development of the mechanism of the need had a

number of ramifications on the analysis system. It was

originally devised as the most reasonable way to regulate

the coming and going of requests. It was in particular an

answer to the first difficulty that the analysis of text

raised, the difficulty of getting rid of some but not all

requests. The need not only showed how to get rid of re-

quests that were never executed but gave an explanation for

why requests that were executed disappeared afterwards.

That a request should only be executed once had seemed both

necessary and reasonable, but now it could be seen as part

of the general phenomenon of requests being removed when

their needs were ''lied.
i2\

It was then found that the need was important for the

process of converting concept sal predictions to language

predictions. Originally there was the general idea of a

routine that would start with a conceptual prediction, look

at each request, and prefer those situations tnat activated

those requests that were most compatible with the conceptual

prediction. The crucial step seemed to be how to recognize

«hat a request was doing. The need turned out to specify

exactly what was wanted, when the conversion routine was

translated from a general idea into a specific algorithm.

The cone-apt of need also provided a motivation for the

stacking, or setting aside, of requests. This motivation

was based on the bond formed between the set of requests

and the set of gaps in the current structures L' ' -g built.

When embedding occurred, the change was a shift in structures,

This change in structure meant a change in the set of gaps

to be filled. This change in the set of gaps meant a change

in the set of needs, and change in the set of needs meant

a change in the set of requests. Unstacking, or resetting,

tho requests was then a matter of returning to a previous

structure, which ni^ant returning to the needs of th^t

structu r > ■.

The question of how d« eply stacking can occur becomes

one of how many times shifts in structure can happen before

the analyzer is unable to remember where to return to. And

a new question is raised about hew recoverable the suggested

requests are. That is, when a previous structure is r^-

turrifi, inspection of it can determine the set of needs.

Jut it is not clear that the set of suggestions for these

needs is still recoverable. It can be, in the analyzer at

present, but considel the following two sentences:

222

I
I
1 John told Mary Hill wa* sick.

John told Mary, who was upset, Bill was sick.

The^e is a suggestion with "tell" that says that, to

fill the need for the object of the communication, look

for an unintroducod clause following the? specification of

the recipient. Thus in the first sentence, "Bill was

sick" is taken as beinq the content of what John told

mg Mary. To me the second ■ ntence requires a "that"

before "Bill" to be natural. That is, the clause should

not be unintroducod in the second sentence. It seems as

though the suggestion described has beon lost due to the

embedding. "That", which had its meaning altered, is re-

quired to bring back the necessary request.

To return to the role that the need came to play, I

would also refer the reaier to section 12.4 in Part II,

"Internal Versus External Needs". There, needs turned out

uo provide a motivation for the way noun phrases were being

hand led.

The need, in other words, is really the star of Part

II, both as a device fcr the processes of extended analysis

and as a concent about which much of the analyzer had im-

plicitly been organized.

Top-down and Bottom-up

To some extent, it could be claimed that the approach

ro analysis in iJart I is bottom-up, while that in Part II

is top-down. That is, in Part I the analysis is based on

the discovery of an element which leads to a set of hypotheses

about what function this element might bo playing. The

•»lenient in this car-,., is a word, and the hypothesized functions

are the requests of that word. The interaction of the

hypotheses from the various elements results in the final

interpretation.

In Part II the analysis is based on making a prediction

about- the function of future elements and, when an element

is discovered, seeing if it can fulfill this function. In

this case the functions are preferred word senses and the

elements, agtin, are words. The final result is the product

of the successful predictions.

These two approaches do not contradict each other. In

fact each depends upon the other. The Part II approach

requires the Part I because, in Part II, the top-down pre-

dictions are not complete, as they are in a top-down parsing

strategy for a grammar. That is, there are situations not

predicted by the extended analysis routinss. When such

situations occur, the analysis system depends on the hypothe-

sizing of -equests from Part I. At the same time, the analy-

zer in Part I depends on the operations of Part II because

the analyzer is not a pure bottom-up approach. That is,

the analyzer in Part I does not keep all possible hypotheses

until they are definitely ruled out. Instead it tries to

"hoose one as soon as possible as the most likely hypothesis,

To do this in a text it requires the information passed by

the mechanisms of Part II.

The two approaches, then, form one integrated system.

The two approaches do not take turns but rather operate

s irr.ul t aneously , acting on different levels. The final re-

sult of an analysis is therefore the product of successful

predictions that have modified and been modified by the sets

of hypotheses, and their interactions, generated from the

input elernents.

224

-: —■===_ !;£D^=

I
I
I
I

f
4

The Monitor

The monitor program in Part I was basically very simple.

It took an input element, chose a word sen' e for it, looked

through a list of retuests, evaluated those that said they

applied, and removed from the list those requests that had

been executed. This loop was repeated for each input element,

Except for noun phrases, all the activity was by the in-

structions themselves.

In Part II the monitor became more complex. Inr.tead

of keeping a list of requests, it keeps a list of needs,

each of which has a list of requests attached. These needs

are related to gaps in structures that are being built. The

input loop is almost the same, but instead of removing

reque.its directly needs are removed as they are filled by

the execution of requests. The monitor also has <3 new job.

This is to keep track of conceptual predictions and, through

the chaining algorithm, eventually modify the t r ction that

chooses word senses.

I would claim however that, if anything, the monitor

is less 1 anguagti-speci f ic in Part II, despite the increase

in its complexity. This is because the handling of noun

phrases is removed from the monitor. The loading of sug-

gestions from word senses, and hence the inhibiting of that

loading, is handled instead by trap routines that are, at

least in spirit, separate fi tm the control functions of

the monitor. This separation decreases the languag?-

specificness of the monitor.

The major additions, on the other hand, arc the build-

ing of chains of request dependencies and the passing of

predictions down these chains. Both of th'?SG processes are

inde1endent of the particular language the analyzer is con-

cerned with. These mechanisms for handling contextual

2?.'>

effects art- based on the most fundamenta] aspects of re-

quests. The requests for handling any language will consist

of TESTs and ACTIONS. The TEST predicate will depend upon

information coming either from the input or from some rolo

in a structure. Therefore a focus for a request can always

be specified. The ACTION function will be placing the

structure it is building in some other structure. Therefore

a need for a request can always be specified. These elements

are all that are needed to implement the algorithms for

building chain:- and for passing predictions.

The monitor therefore is as universal as the request

structure. The processes that form the monitcr therefore

ire i ndi'pendi'nt of particular languages. It is only the

objects of these processes, the actual predicates, functions

and truotures needed, that are peculiar to a given tongue.

226

i

14. FUTURE WORK

1
1

I
I
I

In this section, some of the many open problems rclatPd

to this vork are mentioned. Many of them have been referred

to briefl/ in the descriptions in Parts I and II. A few of

them are specific perhaps to the structure of the approac"'.

used, but most are, I think, the kinds of problems any

analysis system will have to answer.

Assigning Suggestions

One of the quite specific problems that was mentioned

is tnat of resolving the Situation where one suggestion is

applicable to two needs. This arose because suggestions

were allowed to be of the form "if yo'1 need something of

type X, then in situation Z do Y." It might happen that

several different needs would be present, all of type X,

when the suggestion is made. One question is whether this

situation occurs, or whethix it should always be assumed

that when it does, either the suggestion or the needs

were incorrectly specified in the dictionary. If it can

occur, is the solution to assign the suggestion to both

needs, modified in each case so that the filling of X goes

to the right need, or only to one? If the latter approach

is chosen, fehat are the criteria for deciding? Alternatively,

should the suggestion be held until it is triggered, and

then a decision made, based on the nature of the structure

the suggestion produces, as to which need bhould be filled?

Failure of Preferences

Another problem involves the chains of preferences.

Given an initial conceptual prediction the chains of request

dependencies are followed until eventually there is a pre-

ference at the language level. The problem aris^s when

this language preference i;-. cont radictea. That is, suppose

22 7

3 certain feature is preferred but none of the word senses

available satisfy this pieference. Should the [reference

chain he forgotten and a "most common" sense of the wor^

picked.' Or should the preference chain be re-examined and

modified in some way until a preference xs generated that

can bo satis fied?

Preferences and Noun Phrases

Another problem stems from the fact that noun phrase

boundaries may be recognized only by looking at the next

word not in the phrase. The problem is that when the analy-

zer ! •. building a noun phrase it is applying to the function

choosing the word senses a set of preferences. Once the

noun phrase is finished, various requests will be triggered,

and the set of preferences is likely to change. If, how-

over, the analyzer looked at the first word after the neun

phrase t.c determine that the noun phrase had ended, then

it applied the same preference set to that word that it

did to the noun phrase elements. When all the actions

caused by the "digesting" of the noun phrase have finished

and this word is looked at for its own sake, should the sense

freviously picked be kept, or should a sense be rechosen

based on whatever the new preference set is?

Inferences and Chains

The rest of the problems to be discussed are more

concerned with the language-memory interface. They are

basically the 3ame problems that people working on models

of human deductive systems have encountered, but here they

are seen from the viewpoint of language comprehension.

For example, the problem of depth of inference is

important when building preference chains. In the text

example "John hated Mary. John gave Mary a sock," at one

228

point the analyzer asked the memory if ATRANSing something

could hurt someone other th^n the ATRANSer. I said that

••« ^.|,
in normal circumstances the answer to this should be "no

but that there are situations v/here it could be "yes". With

a simple "no" the analyzer can build the preference chain

described.

Suppose though that the memory instead discovers a

possible situation where the answer is "Yes". For example,

the memory might respond "Yes, with the condition that Mary

wants the object being ATRANSed, she expected to get it,

and she is not the recipient of the ATRANS." Even though

this particular hypothesis would be removed when the second

sentence :s analyzed to ehe point "John gave Mary..,"- it

still seems unlikely that this hypothesis should have been

k^pt at all. And, of course, the memory might have heen

even -".ore imaginative and come up with situations where

Mary is the recipient and is still hurt by an ATRANS to

her.

How then can we restrict how imaginative the it'mcry

should be, when answering questions from the analyzer?

■Story-Pattern Predictions

There is a large body of work to be done on dfternnning

ehe conceptual structure of story-pattotns. Part of this

is specifying what conceptual relationships should be used

to build story-patterns in context clusters. besides ehe

causal links it seems reasonable to assume that some patterns

iepend on a proximity in time relationship between events,

heforo trying to categorize such relationships though, there

needs to be a respectaole collection of story-patteris that

have proved useful for binding texts together. And one

decision involved ^n the gathering of this collection in

choosing between general patterns that cover many cases,

229

but require more deduction when used to build preference

chains, and specific patterns, which make morp exact pre-

dictions but which cover only limited situations.

Stylistic Predictions

There it- another kind of c ntext prediction which is

based only partially on the particular content of a text.

These are stylistic predictions, predictions based on

know I-.•dye dl .Tut how stories are written. For instance there

is a prediction, I beliuve, arising in the following text

that stems from an ici^a that stories should be told " sym-

metrically":

It war. a beautiful day. John looked out his win-

iow. To the left he saw the trees in bright

colors.

A predict ion that seems reasonable is that there will soon

be a Fentence beqinning "To the right...".

Work on this type of prediction Is much harder, I feel,

than on the other form of context pradictlon. An approach

coul i r •• based on very syntactic-like rules about composi-

tion, but, as witn the syntax of sentences, problems will

croj up due to the difficulty of letting the conceptual

content of the text interact with these rules. An approach

more compatible with the analysis system presented would

require an understanding of what thoughts and motiviations

are comnunicatwd by various types of story-te11ing device-.

Tuen predictions about what kind of story is being told

could be ronverted from these thoughts and motivations

back into t.'J x t constructions.

Hack 'it)

Intelligent backup routines are a very important and

immediate task for future work. Of particular immediacy

are the backup routines applicable primarily within one

Renter»':! .

230

it

.

1

1

I
I

In section 13.5, "Preference; Sense Choice", I

sketched a possible flow of backup and reanalysis for the

text "John was feeding the deer at the zoo. He gave a

buck to the peanut vendor." It was crucial to the process

that the backup routine made use of all the information

available to the analyzer, including the imture of the prob-

lem that initiated the backup. With this intornaLion the

backup predicted what the reanalysis should result in.

In other words, the Information collected for doing :hc

reanalysis became the context of the new analysis end

made a "better" prediction than the oiiginal context had

made .

The making of a bettor prediction, while non-trivial,

at least involves the same kinds of processes that are

needed for forward analysis. But to do backup requires

deciding whore to go to begin the reanalysis. An answer

that might work on single sentences, namely start over

at the beginning, will be clearly inadequate for texts.

A good source of texts which require backup are jokes.

The comprehension (but not the appreciation< of jokes was

an early go?.l of this work. Jokes sfoss several aspects

of text comprehension wh ich have been the focal points

of the discussion of extended analysis. One point Is the

need for making predictions, for "setting yourself up". The

following joke uses the story of a hunting expedition to

cause an incorrect prediction to be made:

I was on a hunting expedition in Africa. What

a time." I shot two bucks. It was all I had.

Another point is the integrity of a text, that texts can

be as tightly bound together as sentences.

A third point stressed by jokes is »-hat the backup

routine predicts the result of reanalysis. In this joke

2J1

it uses "all I had" to predict the idea of losing money,

which then leads to a correct analysis of "l shot two bucks."

A fourth point is that the backup routines seem to

k iow where to try again. In the abovu case it is the pre-

vious sentence, not the initial one, but the opposite is

true in:

My grandfather was an old Indian fighter. Hr-

did it f^r twenty years. Then he had to quit.

There weren't any more old Indians.

This is probably due to the presence of structures in texts

and sentences which set up kinds of dependency relationships.

These dependencies would form the paths along which backup

routines travel, somewhat independent of the actual order

of text presentation.

At any rate, while backup routines for sentences seem

feasible, routines capable of handling texts seem very far

away as yet.

Finding Referents

The reason refer -tial elements like pronouns arr» ig-

nored in the analyzer is that, although they are a very

big problem, they can be iypassed and other work can still

be done. Further, the nature of the problem's solution

seems to lie more in deuuetive rather then in comprehension

proces-oq. To do "The city councilmen refused the women

a parade permit oecause they advocated violence" and also

"The city councilman refused the women a parade permit

because they feared violence" requires very little from the

language- analysis but an awful lot from the deductive memory.

A partial solution, such as that described by Wilks

(1973b) and sketched in chapter 3 ("Previn.js Work"), could

be incorporated in this system. The basic idea is to gen-

erate a conceptual pattern (from CS1RS for Wilks, from a

2i2

I
I

r

i

general deductive memory here). If this matches an incom-

plete pattern the analyzer has produced for a sentence

with referential elements, and the restrictions set up by

the referential elements (e.g. female) are met, then the

generated pattern provides the missing information.

The real problem with this is finding the pattern that

has the answer. It is unfortunate that the common text

binding predictions from story-patterns do not produce, in

general, the kinds of patterns needed. This is because the

conceptual predictions from story-patterns are very broad,

specifying classes of possibilities. These prediction^ or

preferences can be applied through chaining to words which

have finite sets of senses, each of which produces definite

conceptual structures. The prediction selects one of these

senses.

Referential elements, on the other hand, are themselves

broad classes ol possibilities. What is needed are pre-

dictions of specific conceptual structures from which a

choice can be made. The work of Chariiak (1972) is the

most relevant in this area. This is so not only because

it considers the many kinds of information needed, hut also

because the ba^ic demon meciianism he uses has much in comr.-m

with the request. Hence many of his problems and solutions

can be phrasea in the terminology of the analyzer.

Other Languages

The analysis system described has been offered as a

general model of language comprehension. Although specific

functions and syntactic relationships are peculiar to English,

the basic structures of requests and needs, ol conceptuali-

zations and context clusters, etc., are oriented towards

language processing in general. There is no way to prove

this claim rigorously, but there are two ways to support it.

23 3

One way is to show how the processes can be viewed as memory

mechanisms. This has been the thrust of the general com-

ments that have been made about this system. The other

way is to construct similar analysis systems for other

languages.

Work has just begun at the Istituto per gli studi

semantici c cognitivi, in Switzerland, on a German analysor.

While German bears many similarities to Knglish, it has one

feature that makec the design of an analyzer for it of great

interest: the verb comet last. That is, the word that

often specifies the main conceptual frame for the sentence

is frequently the last word read. Since the English an-

alyzer depundei ^n the verb a great deal (the verb is not

given the special status of being central, I ut most of

them trrn out to be so), this aspect of German would seem

to oe a problem.

However, it should be pointed out that in the analysis

of English in Part II, the verb wa3 no longer the only source

of predictions ab^ut the content of the sentence. There

were also conceptual predictions originating from the analy-

sis of previous text. In German, 1 claim, conceptual pre-

dictions play a much stronger role, especially in isolated

sentences. For example, the analysis of the "Germanized"

English sentence "John had with a club Bill on the head hit"

would involve a prediction that John was hitting Bill be-

fore "hit" waj actudlly road. This prediction, in isola-

tion, would b». based on what someone is likely to do with

a club to aomeoru; elrse. In the context of a description

of a fight this prediction would be even stronger. Even

In English one can construct sentences where predictions

about- conceptual relationships are based on *:he objects

234

involved, such as "With a freshly sharpened knife and a

long l:ork, John carved the turkey." The difference on this

pent between German and English is that German makes

greater use of these conceptual predictions.

For this reason, the work on the German analyzer offers

an interesting challenge. It requires, at an early stag»-,

the mechanisms described in Part II, and uses them con-

stantly. At the same time, it advances our knowledge of

English analysis by focussing on effects that occur in

English but ar<? somewhat masked by the way English sentences

are constructed.

T
I

! 35

L'

14.3 SUMMARY

The various major elements of the analysis syst»m have

been introduced and summarized several times. Therefore

this shall be only a brief recapitulation of the total effort

What his been described is a system for the comprehen-

sion of natural language, in particular of sentences in

English. The system has one aspect of completeness in that

it involves manipulations both on the conceptual and on the

surface levels, and a non-ad hoc means of communication be-

tween the two levels. This is a sort of completeness of

depth. The system is not complete in terms of breadth,

for it does not include all, or even most, of the manipula-

tions needed at either Ifjvel.

The comprehension processes are written in terms of

rfcguests. Requests are pairs of predicates and functions.

If the predicate of a request becomes true, then the func-

tion of the request is executed. The basic flow of analy-

sis consists of maintaining a set of requests, reading

words from the input in a left-to-right direction, executing

the functions of those requests whose predicates have be-

come true, and modifying the set of remaining requests.

Requests initially come from the dictionary entries of the

words that appear in the sentence. The execution of a

request may also introduce new requests.

The final goal of the analyzer is to build a conceptual

structure that represents its interpretation of the 3entence

being analyzed. Along the way the analysis will produce a

number of partial structures, both conceptual and syntactic.

These structures lack information in various places. These

gaps generate needs for structures to fill thorn. Requests

are grouped according to the need-s they would satisfy if

2 3f,

= ■ . ^

they were executed. When a request fills a need by being

execi tt-, that need disappears and with it all the requests

grouped under that need.

One structure that generates needs is the story-pattern

structure of a text. A text is interpreted as a sequence

of conceptualisations. A story-pattern is a proto-typica1

sequence of conceptualization-types that has been stored

in memory. Wh' ,; a text is recognized as following some

particular story-pattern, needs are generated to fill those

parts of the pattern which have not yet appeared in the text

Associated with these needs are general conceptual patterns

which the story-pattern says should appear ir. the still un-

filled positions. It is predicted that these patterns will

be found later in the text.

When these predictions are applied to the sets of re-

quests maintained during analysis, they lead to preferences

about word meanings, i.e. about what dictionary entries

for words of the input should bo used. The preferences,

when successful, cause sentences of the text to be in-

terpreted so as to fill out the missing elements of the

story-pattern.

The analysis system adheres to the following assump-

tions :

1) Its primary task is to comprehend a sentence,

not to assign a syntactic structure to it;

2) Pieces of the interpretation are assumed ar,

soon as possible, while the sentence is still

being read»

3) There are predictions at various times during

the analysis about what will come and how in-

put elements should be looked o) t firvt}

ZM

4) The words of a sentence, through the diction-

ary, provide the information base upon which

all the processes depend)

The requests which originate in the dictionary ar»

language-specifie. The conceptual predictions which arise

from the story structures are culture-specific. The pro-

cesses that communicate between these two are universal In

the sense that they do not depend on particular predicates

and functions but only on the form of requests in general.

238

r

i
14.4 CONCLUSIONS

I
L.

U

y

The development of this analysis system is still con-

tinuing. But, from what has been accomplished already,

some conclusions can be drawn now.

One conclusion is that goals are a very important

factor in determining the nature oc the system produced.

The modelling of human language couprehension was the primär;

reason for the development of this system. I claimed that

this goal set this work apart form previous efforts. Hope-

fully this point is clearer now that the analysis system

has been dejcribed, both in terms of where it is and of

where it will be going.

Another conclusion is that the expectation has been

verified as a useful mechanism for describing analysis

processes. It was shown to he feasible for programming

in Part I, and it was shown to be easy to extend in Part II.

In Part I, the advantages derived from the fact that ex-

pectations didn't require a separation of the analysis pro-

cess into a sequence of stages. Hence it was fairly easy

to take an intuitive hypothesis about the flow of decisions

th^t occurred in the comprehension of some sentence, and

program that flow as a sequence of triggered expectations.

In Part II, the advantages derived from the fact that ex-

pectations were small units and could be characterized and

manipulated easily. Hence it was possible to tie expecta-

tions together with predictions of conceptualizations,

converting these predictions into a direct effect on the

flow of analysis.

Another conclusion is that generative grammars are

not a tiro requisite for computational linguistic progress.

39

Linguistic theories about such grammars are concerned with

the notion of the "structure of language". By contrast I

tak-^ the concern of computational 1 i ngui.«? t ics to he a search

for mechanis s for obtaining information from language con-

structions. One way to do this is to incorporate elements

of generative grammars. Woods and Winograd both did this.

Hut one can also attack a computational linguistic pvjblem

directly, creating new devices that seem most appropriate

for the job at hand The analysis system described here

is a result of a direct approach to the problem of modelling

human comprehension. It does so without recourse to the

notion of a generat ve grammar.

A final conclusion of this work is the feasibility of

treating language analysis as a memory process. The devices

used, i.e. the expectation, the need, the context cluster

and so on, and the problems of concern, i.e. adding, deleting

and diffusing information, are proper to the creation of

a general model of memory processes. There is a tendency,

I think, to associate work on memory models wi\i the unpro-

ducti"'? construction of formalisms, where simple mechanisms

are postulated but no content for testing these mechanisms

is provided. Here, hovy^ver, both conten_ and mechanisms

have developed together. An analysis system, like this

one, that is consistent with a general memory model, can

contribute not on1'/ to the domain of computational linguis-

tics, but to artificial int-el ligence as a whole.

240

REFERENCES

Charniak, E. "Towards a Model of Children's Story Compre-
hension", AI TR-226, MIT, December 1972.

Enea, H. and Colby K. "Idiolectic Language-Analysis for
Understanding Doctor-Patient Dialogues", IJCAI3.

Goldman, N. "Computer Generation of Natural Language from
a Deep Conceptual Base", Ph.D. thesis, SU, 1974.

Goldman, N. and Riesbeck, C "A Conceptually Pased Sencence
Paraphraser", AIM-196, SU, May 1973.

ilalliday, M. "Functional Diversity in Language as Seen from
a Consideration of Modality and Mood in English",
Fourtdations of Language, 6_, 1970.

2uara, L. and Diffie, W. "Stanford Lisp 1.6 Manual", Stanford
AI Lab Operating Note 2 8.7, SU.

Quillian, R. "Semantic Memory" in Minsky, M. Ed. Semantic
Information Processin-;, The MIT Press, Cambridge, 1968.

Rieger, C. "Conceptual Memory", Ph.D. thesis, SU, 1974.

Riesbeck, C. "Expectaticn as a Basic Mechanism of Language
Comprehension", presented at the International Con-
ference on Computational Linguistics, Pisa, Italy,
September 1073.

Russell, S. "Semantic Categories of Nominals for Conceptual
Dependency Analysis of Natural Language", AIM-172,
SU, July 1972.

Schank, R. "Conceptual Dtoendency: A Theory of Natural
Language Understanding", Cognitive Psychology, 2» 4»
October 1972.

Schank, R., Goldman, N., Ripgor, C, and Riesbeck, C.
"Primitivn Concepts Underlying Verbs of Thought",
AIM-16^, SU, February 1972.

Schank, R. and Tesler, L. "A Conceptual Dependency Parser
for Natural Language", Statistical Methods in Linguistics
6 , 19 7 0.

241

1

Smith, D. "Mlisp", AIM-iaO, SU, October 1970,

Tesler, L., Enea, H., and Smith, D. "TH^ Lisp 70 Pattern
Matching System", IJCAI3.

Wilks, Y. "An Artificial Intelligence Approach to Machiie
Translation", in Schänk, R. and Colby, K. Eds.
Computer Models of Thought and Language, W. H.
Freeman and Co., Sar. Francisco, 1973.

Wilks, Y. "Natural Language Inference", AIM-211, SU, August
1973.

Winograd, T. "Procedures as Representation for Data in a
Computer Program for Understanding Natural Language",
MAC TR-84, MIT, February 1971.

Woods, W. "Transition Network Grammars for Natural Language
Analysis", Comnunications of the ACM, i_3, 10, October
19 70.

Abbreviations:

IJCAI 3-proceedi.ngs of the Third ..ite rnational Joint Con
ference on Artificial Intelligence, Stanford University,
Stanford, California, 1973.

MIT -Massachusetts Institute of Technology, Cambridge,
Massachusetts.

SU -Computer Science Department, Stanford University,
Stanford, California.

242

	Untitled

